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Abstract

The research world is undergoing a transformation into one in which data, on massive levels, is freely shared. In the clinical
world, the capture of data on a consistent basis has only recently begun. We propose an operational vision for a digitally based
care system that incorporates data-based clinical decision making. The system would aggregate individual patient electronic
medical data in the course of care; query a universal, de-identified clinical database using modified search engine technology in
real time; identify prior cases of sufficient similarity as to be instructive to the case at hand; and populate the individual patient's
electronic medical record with pertinent decision support material such as suggested interventions and prognosis, based on prior
outcomes. Every individual's course, including subsequent outcomes, would then further populate the population database to
create a feedback loop to benefit the care of future patients.
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Introduction

With the near universal implementation of electronic medical
records (EMRs) in conjunction with enhanced data storage
options, the time nears for real time data utilization in the
clinical care process [1]. The subject of the increasing
importance of data for health care is much talked and written
about, but there is much less discussion regarding how data
might specifically be used to drive and improve the individual
clinician-patient interactions that accrue to formulate the process
of health care. In other words, how could complete clinical
decision support be implemented across the entire health care
system? Big data is an increasing presence in health care, but

data of all sizes are still underutilized. In those instances when
they are used at all, they are used mainly in a retrospective
analytic manner to analyze outcomes, processes, and costs.
Currently, they do not dynamically drive clinical decision
making in real time.

We have written on the need for the better use of intensive care
unit data, noting that the development of data-based clinical
decision support (CDS) tools would be one of the benefits of
more comprehensive data capture [2]. Currently, the medical
digital world comprises systems that are technically networked,
but with data that are not systematically gathered, captured, or
analyzed [3]. There are several studies that have demonstrated
the potential applications and potential of capturing and
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analyzing clinical data [4,5]. In a more general response to this
challenge, we describe a solution that combines the utilization
of three fundamental components in real time: (1) big data, (2)
search engines, and (3) EMRs. In particular, search engines are
brilliant tools that we all utilize many times each day; however,
they have not been systematically employed for the purpose of
CDS, and they represent an overlooked resource.

Dynamic Clinical Data Mining

The struggle to implement EMRs is finally coming to a mainly
successful end in North America. However, the current
generation of EMRs serves to digitalize information, but not to
leverage it. The next step in the clinical digitization process
should be the creation of a medical Internet equivalent that
incorporates the rapid, powerful data search engine features that
all current Web users employ. We refer to the real time
incorporation of external data into the workflow as dynamic
clinical data mining (DCDM) (Figure 1 shows this mining).
This process will drive the design of the next generation of
EMRs, and it will subsequently support the next required stage
of the digital transformation process by turning medical practice
into a data driven, logical, and optimized system. This care
support system will provide users with the timely information
that they require to make the increasingly complex decisions
of medical practice.

We propose a system in which the knowledge gained from the
care of individuals systematically contributes to the care of
populations. The loop is closed when the richer data available
in the population datasets is subsequently used in the care of
individuals. DCDM would leverage the automatic crowd
sourcing available in the form of population outcome analysis
to formulate individualized diagnostic and therapeutic
recommendations in real time. In other words, our viewpoint
aligns with the Committee on a Framework for Developing a
New Taxonomy of Disease, who advocate that “researchers and
health care providers have access to very large sets of health
and disease-related data linked to individual patients” in order
to facilitate precision medicine [6]. To the Committee’s position,
we would add our own that researchers and clinicians are already
experienced with Internet search engines, so they would be
comfortable with the identification of pertinent clinical
information by accessing these large sets of data through a
search engine metaphor. Currently, most clinical guidelines are
generated by expert opinion based on experience and research
findings such as randomized controlled trials [7]; DCDM would
formulate the functional equivalent of personalized clinical
guidelines.

While leading a team in the intensive care unit (ICU), one of
us (LAC) experienced a difficult decision involving the
resumption of anticoagulation in a patient with two mechanical
heart valves. The patient was recovering from endocarditis
complicated by brain abscesses. The team consulted local
experts as well as the literature to guide them in weighing the
risks and benefits of reinitiating anticoagulation, given the
patient’s age, comorbidities, the specific bacteria involved, the
number of mechanical valves, the extent and current status of
the infection, etc. The information resources that were accessed

provided only general recommendations that were obviously
not tailored to the patient’s demographics and comorbidities,
nor to the specifics of the clinical context. The majority of these
recommendations were based on expert opinions or small
clinical trials, and not on “gold-standard”, multi-center
randomized controlled studies. The decision was made to restart
anticoagulation cautiously, given the patient’s clinical stability,
the absence of bleeding complications during the acute phase,
and the lack of any planned surgical intervention. In fact,
preparations were underway for discharge to a skilled nursing
facility. Unfortunately, four days after reinitiation of
anticoagulation, the patient suffered from a massive hemorrhage
of one of the brain abscesses, prompting emergent
hemicraniectomy. A DCDM system could have provided
predictions of the harms and benefits of anticoagulation for such
a complicated patient, and it would provide the previous
outcomes associated with each treatment option to review in
real time [8].

Uncertainties are not limited to complex scenarios, but occur
with alarming frequency in all medical settings. For example,
on a daily basis in the ICU, emergency department, or the
operating room, clinicians target a desired blood pressure
according to population-based guidelines. When hypotension
ensues, the timing, mode, and extent of intervention to maintain
that goal remain art rather than science. Given that interventions
to raise blood pressure such as vasopressor therapy or fluids are
associated with risk of harm if given even slightly in excess, it
is crucial that the targeted blood pressure be personalized as
much as possible. DCDM would add the knowledge gained
from prior care of populations to the current local data specifics
in order to formulate an approach that is optimal in terms of
both the short-term goal as well as the long-term outcomes. For
instance, DCDM could assist an ICU physician in choosing an
intervention and its dose to treat shock, such that the intervention
has the optimal effect on the short-term blood pressure profile
and long-term mortality, length of stay, and/or eventual quality
of life.

Other studies have explored similar themes. Certainly the
application of logic and probability to medicine has been
discussed for decades [9]. More recently, and more to the point
of our discussion, a variety of commentators have called for a
nationwide learning health system [10,11]. In 2011, Frankovich
et al reported the case of a girl with lupus and potential
thrombotic risk factors. To determine whether anticoagulation
was appropriate, they used text searching to retrieve records of
similar patients from their hospital’s EMR, followed by a
focused manual review. They found that pediatric patients with
lupus and these potential risk factors indeed had a higher risk
of thrombosis than those without the risk factors, and they
elected to start anticoagulation as a result [12]. The Query Health
initiative, from the Office of the National Coordinator for Health
Information Technology, intends to facilitate distributed queries,
which can aggregate results from multiple organizations’patient
populations while preserving data security [13]. Similarly, the
goal of the Strategic Health Information Technology Advanced
Research Project on secondary use (SHARPn) is to standardize
structured and unstructured EMR data to promote its reuse [14].
The open source Clinical Text Analysis and Knowledge
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Extraction System and the SHARPn program use the
Unstructured Information Management Architecture, the same
architecture that allowed the Watson system from International
Business Machines to compete on the Jeopardy! television quiz
show [15,16]. In general, search engines for unstructured text
are seen as the first step, and implementation of “content
analytics” is the next step to extract information, allow
exploration, and to improve search [17].

CDS provides caregivers with information to improve the quality
of their decision making, yet caregivers still do not have
available a dynamic, comparative analysis between the current
patient and all available data generated during clinical care.
This analysis is individually tailored because it uses EMR data

entered on one specific patient, yet it remains population-based
because the analysis makes a comparison to population data, to
identify similar clinical situations from the past, and to mine
them for interventions and subsequent outcomes (as illustrated
in point 5 in Figure 1). Thus, the clinician does not have to make
a decision in isolation from what has been tried, observed, and
documented by many colleagues in many other similar patients.
In addition, the information provided would provide useful
support to the process of patient-physician shared decision
making [18]. This approach would interrogate data to suggest
next step options and weigh the risks and benefits of a treatment
or test for a specific patient, the Holy Grail of personalized
medicine.

Figure 1. Dynamic clinical data mining. Figure courtesy of Kai-ou Tang and Edward Moseley. EMR=electronic medical record.

Discussion

Required Data and Information
The most basic requirement for the DCDM system is the
complete digital capture of patient information. We would
maintain that de-identified clinical data constitutes a public
good and should reside in a carefully managed public domain
database, overseen by a cooperative coalition of vendors,
provider institutions, and regulators. This is already the case
for federally funded research data in the United States, and a
movement is underway to share participant-level data from
clinical trials [19-21]. Furthermore, the Patient Centered
Outcomes Research Institute in the United States has already

begun to develop the infrastructure that will aggregate large
amounts of de-identified patient data from diverse sources for
the purposes of observational research studies [22]. Any central
database or federated query system must of course be governed
by policies that account for the interests and preferences of the
public regarding patient privacy, and the purposes for which
the data are used [23]. The costs of database management would
be built into purchase and maintenance agreements. Subsequent
analyses would identify the clinical and financial impact of the
entire data-based system with adjustments made as necessary.

In a DCDM system, a search engine would accept both
structured and unstructured search terms to query the population
database, much as current search engines query the database of
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the entire Internet. The unstructured terms could be used in a
query via real time natural language processing or the next
generation of “text to code” conversion applications, which
convert free text to coded, structured search terms, while
considering the context provided by free text, in order to ensure
accuracy and clinical intention. The individual’s data would be
rapidly compared to the population database to capture a set of
useful records that match the content and context of the care
encounter.

We envision every patient’s health data digitally catalogued
according to demographics, diagnoses, treatments, and
outcomes, all time stamped for sequential interpretation. We
suspect the types of data included will evolve rapidly over time.
For example, future data may be derived from cell phones or
home monitors. This will be the basis of a data-based learning
system of care where choices are made on the basis of
substantial data, statistical support programs, and documented
outcomes, rather than on individual experience and inconsistent
use of applicable informational resources.

Potential Obstacles
A significant caveat is that bias and/or residual confounding by
indication may mar the analysis. The goal is to identify patient
records in the database that are as similar as possible to the
patient in terms of the variables that can confound the
relationship between the intervention and the outcome as
identified by clinician heuristics and complemented by computer
algorithms, and then to compare the outcomes of those who
receive the intervention versus those who did not. Residual
confounding means that the outcome difference might not be
due to the intervention, but rather due to something inherent to
those patients who receive the treatment, or their condition.
Realizing that the system is to be used by clinicians rather than
data scientists, it must be designed so that such confounding
and bias are minimized, with the confidence levels around the
estimate of the treatment effects quantified and explained at the
clinical user interface level.

The use of raw data from a variety of sources will present
challenges. We acknowledge the inherent heterogeneity of
people and disease. This presents an issue in terms of the levels
of detail that require capture. The integration of data from
multiple sources will require the use of standard terminologies
and ontologies to allow for compatibility of the data from one
source to another [14]. With the use of such standardization,
these heterogeneities become inconveniences, not obstacles, to
the vision. We foresee the implementation of progressively
better EMRs, networks, and databases, all used by a generation
of clinicians who have grown up with, are comfortable with,
and expect to use and benefit from digital tools. It is important
to anticipate potential risks, but this should be done in order to
design and build the system so as to minimize them.

CDS tools must be engineered purposefully into workflow to
avoid actually increasing user time and work requirements. An
author of this paper (LAC) has previously reported on the use
of local databases for the creation of CDS tools [24-26], which
is one of the “grand challenges” in CDS [27]. Recent work adds
the input of dynamic variables, which capture more information
than traditional prediction models, including data on changes

and variability of repeatedly measured values [28]. The readers
are hereby directed to a recent review of the use of data mining
in CDS [29]. DCDM would extend the capabilities of CDS by
dynamically incorporating both individual and population data
in real time [30,31]. In addition to querying and populating local
databases, DCDM would also use the power of search engine
technology to leverage population level data.

Organization and Actuation
Combined clinical and engineering teams would need to work
together to generate algorithms to determine the weight of each
feature being matched against the outcome of interest, as well
as the relative value of (and permissible missing values for) the
interacting data elements in the match process. These algorithms
should be modifiable in order to meet the continuously changing
practice of medicine. Search engine algorithms are modifiable
and these modifications can be engineered for specific purposes.
Google has made a number of such strategic modifications to
its algorithms over time [32]. It is likely that a prototype
employing a smaller search target such as the Multiparameter
Intelligent Monitoring in Intensive Care (MIMIC) Database
[33] would be required to demonstrate the practicality and utility
of the concept, as well as to create, develop, and initially refine
the search engine algorithm. Indeed, the MIMIC Database has
been previously employed to predict fluid responsiveness among
hypotensive patients [34], as well as the hematocrit trend among
patients with gastrointestinal bleeding [35], using the trajectory
of physiologic variables over time.

The system would identify and suggest prioritized interventions
and other courses of action that have been shown to be most
valuable in terms of outcome and cost. The system’s features
might include displays of quantitative and qualitative description
of the match, hyperlinks that allow the user to drill further into
the underlying data that is returned, and links to conventional
practice guidelines and evidence-based modalities.

A clinical decision must be made at one point in time, but in
most cases, decisions are ongoing and iterative. The system will
incorporate the short-term response to the prior intervention
each time that the system is accessed, but also capture long-term
outcomes. For example, when a physician orders an intervention
in response to acute kidney injury, the system would log the
short-term response in serum creatinine, and also the long-term
outcome of progression to or prevention of end-stage renal
disease. The system could also be independently data mined to
identify patterns that indicate whether the patient course is on
track toward the desired outcome.

Large, diverse, international populations would improve the
opportunity to achieve matches. When no match is possible, an
alert could be provided noting the unusual features that preclude
a match. The system would then provide appropriate suggestions
for the user, such as a specialty referral, a data error of some
kind, or even the possible detection of an entirely new condition.
It would also serve as an epidemiological tool that recognizes
emerging or spreading contagions [36,37], or other harmful
exposures [38,39] more quickly and efficiently than is currently
possible.
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Conclusion

DCDM has its roots in the need for medical care to be more
fully based on data. The universal collection of data would also
present the additional advantages of providing future
opportunities to formulate randomized registry trials, as well
as for other directed data mining purposes [40]. DCDM would
begin to transform the exigent data entries that clinicians

perform on a daily basis into a real tool for clinical care.
Decisions would be made on the basis of experience over vast
populations, rather than solely on individual knowledge and
experience. We propose the creation of a system that supports
clinician decision makers so that their decisions can be as
logical, transparent, and unambiguous as possible. DCDM would
more gainfully employ the power of networked computers,
search engines, and data storage advances to leverage the
copious, but underused data entered into EMRs.
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Abbreviations
CDS: clinical decision support
DCDM: dynamic clinical data mining
EMRs: electronic medical records
ICU: intensive care unit
MIMIC: Multiparameter Intelligent Monitoring in Intensive Care
SHARPn: Strategic Health Information Technology Advanced Research Project on secondary use
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