
Segmentation of 24-hour Cardiovascular Activity Using ECG-based
Sleep/Sedation and Noise Metrics

GD Clifford1, LF Zapanta1, BA Janz1,2, JE Mietus2, CY Youn3, RG Mark1

1Harvard-MIT Division of Health Sciences & Technology, 45 Carleton St., Cambridge, MA, USA
2Beth Israel Deaconess Medical Center, Boston, MA, USA
3Information Communications University, Daejon, Korea

Abstract

A method to segment cardiovascular time series is
proposed using ECG-derived metrics. Segmentation of
cardiovascular time series into quasi-stationary and low
noise segments is important for the construction of mod-
els (based around fixed operational points) and the eval-
uation of a variety of indices, including cardiovascular
(such as HRV) and signal quality-based metrics. Noise and
activity-related segments are excluded using beat classifi-
cation and ECG spectral thresholding. ECG-based cardio-
respiratory and cardio-pulmonary coupling (CRC/CPC)
metrics are used to determine periods of deep sleep or se-
dated states, amenable to model fitting and cardiovascu-
lar metric evaluation (which require quasi-stationary time
series). Performance tests using a realistic ‘perfectly se-
date/deep sleep’ ECG model over a range of coloured
1/fβ Gaussian noise sources (0 ≤ β ≤ 2) show that
the CPC metric is extremely robust to high levels of real-
istic noise with only a 7% error in classification of deep
sleep/sedated states at a signal-to-noise ratio of -20dB
(β = 2), 0dB (β ≤ 1). In vivo murine tests reveal a corre-
lation between CRC and HR, and an anti-correlation with
noise and activity metrics. Tests on human ECGs recorded
in an intensive care unit show a similar relationship. The
techniques presented in this paper may therefore provide a
robust set of metrics for segmenting cardiovascular signals
into quiescent and noisy/active states.

1. Introduction

The RR-interval time series extracted from the ECG can
be accurately modelled by a series of segments of vary-
ing length with a given mean (operating point) and vari-
ance [1], where the lengths are distributed with af−1 fre-
quency scaling [2].However, the exact point at which a par-
ticular normal (non-arrhythmic) nonstationary shift in the
ECG occurs is highly unpredictable, since it is induced by
a complex variety of endogenous and exogenous factors

including natural changes in the autonomic nervous sys-
tem and shifts in activity. In order to analyse this type of
time series, many methods (such as spectral analysis and
model-fitting) require the segmentation of the time series
at these changes. Furthermore, shifts in stationarity are
often accompanied by an increase in artifact density [3].
Not only can the identification and removal of artifactual
sections help reduce error in studies, but the frequency of
artifact (or lack of artifact) is useful information [3]. The
distribution of the length of stationary segments has also
been shown to be useful as a health metric [4]. In partic-
ular, epoch distribution during wakefullness differs signif-
icantly from that during sleep [5], and recent studies have
shown that cardiovascular analysis during sleep can lead to
improved metric sensitivity [6].

Segmentation schemes for long term cardiovascular
time series have already been proposed [7] but with lim-
ited success since they are based only upon the statistical
nature of the RR interval time series. However, much more
activity-related information can be derived from the ECG
than just the sequence of beat-to-beat intervals. In this pa-
per we present a novel method of segmenting the ECG into
quiescent states using a set of ECG metrics based upon di-
rect spectral ratios, the density of artifactual beat classifica-
tions, ECG-derived respiration (EDR), heart rate variabil-
ity (HRV) and the coupling between the EDR and HRV.
The method is calibrated for a spectrum of noise powers
and colours using a realistic artificial ECG [8, 9]. Tests on
murine ECG are compared to activity metrics derived from
an independent visual movement metric. Finally, tests on
intensive care unit (ICU) data are compared to the Riker
scale, a clinical scale for sedation and agitation.

2. Methods

2.1. Cardiorespiratory coupling

Respiratory sinus arrhythmia (RSA), or increases in
heart rate with inspiration (and decreases with expiration)



is partly due to the Bainbridge reflex, the expansion and
contraction of the lungs and the cardiac filling volume
caused by variations of intra-thoracic pressure [10].

Respiratory rate may be derived from the body surface
ECG (EDR) by measuring the fluctuation of the mean car-
diac electrical axis [11] or peak QRS amplitudes which ac-
company respiration. This fluctuation is due to changes in
the observation axis or thoracic impedance caused by the
expansion and contraction of the chest during respiration.

The frequency coupling of RSA and EDR has been
shown to be correlated to sleep stability in humans [12].
Coupling between these two signals is more evident or eas-
ily obtainable when the subject is at rest (or in deep sleep)
where there are fewer factors that may significantly influ-
ence changes in the respiratory rate or heart rate. Further-
more, the strongest coupling frequency is directly corre-
lated with respiration, which is a good index of activity.

Following [12], frequency coupling is measured using
the cross-spectral density between RSA and EDR. Two
slightly different measures of cross-spectral density are
obtained: coupling frequency with respect to magnitude
of the sinusoidal oscillationsA(f) and the consistency in
phase of the oscillationsΘ(f) are separately calculated
such thatA(f) = E [ |P i

xy(f)|2 ] andΘ(f) = |E [ P i
xy(f)

]|2 whereE [.] denotes averaging across all thei = 1, .., N
segments andP i

xy(f) is the cross-periodogram of theith

segment. A measure of RSA and EDR coupling which we
call the cardiorespiratory coupling(CRCindex), is then
given by

CRC(f) =
A(f)

max[A(f)]
∗ Θ(f)

max[Θ(f)]
(1)

which ranges between0 and1. A low CRC indicates poor
coupling and therefore increased activity. A high CRC
(> 0.4) indicates decreased activity that can be interpreted
as sleep or sometimes sedation. It should be noted that this
method, used on the murine data, is a slight modification
of the one used in [12] (called Cardiopulmonary Coupling,
or CPC), where the squaring of the phase is taken before
the averaging. This method is used on the artificial and
human ECG and does not appear to lead to significant dif-
ferences in the metric as a predictor of stable (coupled high
frequency) activity. Furthermore, in CPC, the cross-power
is thresholded at different frequencies to produce an output
of wakefullness/REM sleep (W-R), light/cyclic alternating
pattern (CAP) sleep, or restfull/non-CAP (NC) sleep. NC
sleep is correlated with low Riker scores and W-R is cor-
related with medium to high Riker scores.

2.2. Power thresholding & artifact density

Increase in noise in the ECG signal is a strong indication
of an increase in the level of physical activity. This noise

can either be measured by direct spectral measures or by
counting the number of false positives of any ECG analysis
algorithm. For a direct spectral estimation, Welch’s aver-
aged periodogram method is used on 30 second segments
of linearly detrended ECG. The signal is then divided into
eight sections with 50% overlap. A Hamming window is
applied to each section, then zero padded to the next power
of two and the eight periodograms are then averaged.

The energy in the clean murine ECG is mostly confined
between 1 Hz to 200 Hz. A noisy murine ECG usually
results in an increase in energy in the low (< 3 Hz) fre-
quency range which corresponds to baseline wander of the
ECG. Surprisingly, noise in the ECG signal, which in-
cludes movement and muscle artifacts, does not seem to
manifest itself as a significant increase in energy above 200
Hz. For this reason and due to the fact that mouse heart rate
can drop below 120 bpm (below 2 Hz), ECG noise will be
measured primarily by baseline wander (energy below 1
Hz). The ECG index is given by

ECGindex =
Power > 1 Hz

Total Power (0− 250 Hz)
(2)

Since human ECG has significant non-activity related
information in the sub 1Hz region, we cannot use this
threshold as an indicator of activity. However, a previ-
ous study [3] has demonstrated that the density of abnor-
mal beats in a given window can be indicative of sudden
changes in activity. We extend this idea and postulate that
extremely active subjects will have persistent artifacts on
the ECG significantly above the normal expected levels
and inactive subjects will exhibit few artifacts. We there-
fore propose to use an artifact count in a given 60s window
as a metric of activity. Low counts are interpreted as inac-
tivity.

2.3. Non-ECG comparison metrics

In the case of the artificial ECG, nogold standardmetric
is needed, since the model is designed such that a station-
ary, synchronized (deep sleep) output will result from any
activity metric. For the murine ECG we devised a simple
activity metric derived from a fixed webcam which cap-
tured an image of the mouse at 1Hz. The activity metric
was taken as the mean squared difference between each
frame. Given twoN x M imagesXij andYij , wherei and
j are coordinates for theith and jth pixel respectively,
motionMn is calculated as

Mn =
1

NM

N∑
i=1

M∑
j=1

(Yij −Xij)2 (3)

Increased level of activity results inMn � 0 while mini-
mum activity decreasesMn towards0.



Table 1. Percentage correct CPC sleep staging for model
ECG exhibiting only deep sleep (NC=100%) with decreas-
ing SNR (coloured noise;0 ≤ β ≤ 2).

β SNR CAP NC | β SNR CAP NC
2 -2 2 98 | 1 27 0 100
2 -4 2 98 | 1 24 0 100
2 -6 2 98 | 1 21 0 100
2 -8 3 97 | 1 18 0 100
2 -10 2 98 | 1 15 0 100
2 -12 4 96 | 1 12 0 100
2 -14 5 95 | 1 9 2 98
2 -16 6 93 | 1 6 3 97
2 -18 4 96 | 1 3 5 95
2 -20 5 95 | 1 0 6 93
0 18 1 99 | 0 12 2 98
0 15 1 99 | 0 0 3 97

For the ICU data, the Riker scale [13] (a standard se-
dation/agitation scale routinely recorded by nursing staff
approximately once per hour) was used; see [13] for def-
initions. Although the Riker scale is broken down into
seven classes, we consider only three distinct classes; se-
dated (≤ 3), awake and alert (4) and agitated (≥ 5).

2.4. Data

Three types of data are used in this study; artificial ECG,
murine ECG and human ECG recorded from an ICU. The
ECG model, described in [8] and [9] is designed to produce
a constant phase relationship between the RS amplitude
changes and the RR interval changes (since the latter drives
the former). The mouse data is described in [14] and the
ICU data is described in [15].

3. Results

Table 1 presents details of the application of a realis-
tic ‘perfectly sedate/deep sleep’ ECG model over a range
of coloured1/fβ Gaussian noise sources (0 ≤ β ≤ 2).
The CPC metric is extremely robust to high levels of
realistic noise with only a 7% error in classification of
deep sleep/sedated states at a signal-to-noise ratio of -20dB
(β = 2), -0dB (β = 1).

Figure 1 illustrates a typical relationship between
the mean heart rateHRmean, ECG spectral quality
ECGindex, web-cam derived motion index (Mn) and
the CRCindex. Notice that regions whereCRCindex is
greater than0.4 correlate with lowHRmean and high
ECGindex. Moreover, the corresponding frequencies are
around 3 Hz, which is the normal breathing frequency.
This observation indicates thatCRC may be used as a
good index of mouse activity.

Figure 1. From top to bottom: mean heart rateHRmean

(bpm), ECG spectral qualityECGindex, motion (Mn) and
CRCindex. Each metric is computed on a30 second win-
dow and sliding the window by15 seconds.

It is important to note that frequency components of
RSA and EDR signal can only be obtained if heart rate
is high enough to prevent sub-Nyquist frequency under-
sampling and therefore extreme bradychardia can result in
frequency aliasing. Furthermore, the noise metric does not
perform well on humans, even when scaled by theusual
[14] factor of 10, since there can be significant power
< 0.1Hz for sedated or sleeping patients. It may be ap-
propriate to reduce this frequency threshold.

Figure 2 illustrates an application of the CPC algorithm
to human data. The sleep/wake values are derived from
thresholding on the cross-spectral density (see [12]). The
Riker values recorded just before the onset of this record
and just after the end of the recording were 3 (sedated) and
4 (calm and cooperative) respectively. This is typical of the
results observed so far; Riker scores of 3 and below map
to stationary coupled CPC activity The sudden shift in the
dominant cross-spectral coupling frequency from 0.5Hz to
0.3Hz may be due a change in ventilator settings. Note
also that other arousals also appear in the time series, but
no corresponding Riker measurement is available at these
times. This undersampling is an inherent problem with
the use of the Riker scale and prevents the complete val-
idation of this technique within the ICU with this scale.
Furthermore the times at which Riker scores are recorded
are subject to non-systematic inaccuracies. A more strin-
gent method for recording agitation (such as actigraphy)
is therefore more appropriate. It should also be noted that
observations of the periodogram time series in figure 2 in-
dicate that ECG measurements of power in the low end of
the spectrum (< 0.5Hz) may prove redundant, since the
CRC or CPC indices include this information.



Figure 2. CPC-derived sleep staging and the associated
HR-EDR cross spectra. Note the arousal at hour 2.5 and
the shift in respiratory frequency (from 30 to 18 rpm)
around hour 4.

4. Conclusion

Performance tests using a realistic ‘perfectly se-
date/deep sleep’ ECG model a range of coloured1/fβ

Gaussian noise sources (0 ≤ β ≤ 2) show that the CPC
metric is extremely robust to high levels of realistic noise
with only a 7% error in classification of deep sleep/sedated
states at a signal-to-noise ratio SNR of -20dB (β = 2), -
0dB (β = 1). In vivo murine tests reveal a correlation
between CRC and HR, and an anti-correlation with noise
and activity metrics. Preliminary tests on human ECGs
recorded in an ICU show a similar relationship. The fu-
sion of ECG-derived metrics presented in this paper may
therefore provide a robust set of metrics for segmenting an
ECG into quiescent and noisy/active states.
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