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Summary
Objective: To compare general and disease-
based modeling for fluid resuscitation and 
vasopressor use in intensive care units.
Methods: Retrospective cohort study in -
volving 2944 adult medical and surgical in-
tensive care unit (ICU) patients receiving 
fluid resuscitation. Within this cohort there 
were two disease-based groups, 802 patients 
with a diagnosis of pneumonia, and 143 pa-
tients with a diagnosis of pancreatitis. Fluid 
resuscitation either progressing to subse-
quent vasopressor administration or not was 
used as the primary outcome variable to 
compare general and disease-based model-
ing.

Results: Patients with pancreatitis, pneu-
monia and the general group all shared three 
common predictive features as core vari-
ables, arterial base excess, lactic acid and 
platelets. Patients with pneumonia also had 
non-invasive systolic blood pressure and 
white blood cells added to the core model, 
and pancreatitis patients additionally had 
temperature. Disease-based models had sig-
nificantly higher values of AUC (p < 0.05) 
than the general group (0.82 ± 0.02 for 
pneumonia and 0.83 ± 0.03 for pancreatitis 
vs. 0.79 ± 0.02 for general patients).
Conclusions: Disease-based predictive mod -
eling reveals a different set of predictive 
 variables compared to general modeling and 
improved performance. Our findings add 
 support to the growing body of evidence ad-
vantaging disease specific predictive model-
ing.
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1. Introduction
A body of literature already exists describ-
ing predictive modeling across a range of 
clinical outcomes in intensive care units. To 
date, much of this modeling has taken the 
approach of focusing on general intensive 

care unit (ICU) populations and an “aver-
age” patient [1]. One explanation for this is 
the tendency for clinical trials to enroll het-
erogeneous group of patients in order to 
maximize external validity of the findings, 
however, predictive models developed 
using this approach often perform poorly 

when applied to specific subsets of patients 
[2]. Another explanation for general popu-
lation modeling is the lack of data sup -
porting the application of these techniques 
to smaller subsets.

Recent advancements in modern ICUs 
have facilitated the capture of human sig-
nals with heightened resolution and an im-
perative to store them electronically. The 
burgeoning interest in and ability to cap-
ture large datasets provides predictive risk 
modelers with a substrate to apply tools 
and techniques to a study size that is now 
statistically robust. Where small groups of 
patients clustered together under disease 
headings previously might struggle for 
 statistical robustness, large data sets now 
seem to be particularly fertile ground for 
analytics of this type to inform clinical 
guidelines. 

Predictive modeling requires input vari-
ables and an outcome of interest [3, 4]. In 
this study, the chosen outcome is failed 
fluid resuscitation requiring subsequent 
vasopressor therapy. Fluid resuscitation 
therapy is often the first and mainstay 
treatment for correcting signs and symp-
toms synonymous with intravascular vol-
ume depletion. The goal of this therapy is 
to maximize preload and increase cardiac 
output. Effective intravascular pressure is 
the key for efficient perfusion at the cell 
level and thus treatment should ideally be 
started as soon as possible and subsequent 
therapy titrated against response [5 –7]. 
Subsequent therapy for failed fluid resusci-
tation and blood pressure support often 
requires vasopressors. Fluid resuscitation 
and vasopressor administration are there-
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fore common activities in ICUs and their 
management is important.

In this paper we compare fluid resusci-
tation and vasopressor administration pre-
dictive models for two disease-based con-
ditions, pneumonia and pancreatitis, and 
compare these models to that for a general 
ICU population. We hypothesize that ICU 
patients with pneumonia and pancreatitis 
not only will have different models com-
pared to general ICU patients, and that 
these models will have better performances 
in regards to prediction of non-response to 
fluid resuscitation.

2. Materials and Methods
2.1 Study Design and Population
This retrospective cohort study used data 
from the Multi-parameter Intelligent Moni-
toring for Intensive Care (MIMIC II) data-
base [8]. This is a large database of ICU pa-
tients admitted to the Beth Israel Deaconess 
Medical Center (BIDMC), collected from 
2001 to 2008, and that has been de-identi -
fied by removal of all Protected Health 
 Information. The MIMIC II database cur-
rently contains more than 25,000 patients 
and includes high frequency sampled data 

of bedside monitors, clinical data and demo-
graphic data. BIDMC is a 621-bed teaching 
hospital with 28 medical, 25 surgical (in-
cluding neurosurgical), 16 cardiothoracic 
surgical and 8 cardiology ICU beds. 

The criteria for patients inclusion in-
cluded: i) only medical and surgical ICU 
patients; ii) >15 yrs of age; iii) patients con-
taining at least one measurement for all 
twenty-five variables from ▶ Table 2; iv) in 
the case of multiple ICU admissions, only 
the first stay was considered to exclude 
later developed complications; v) patients 
having at some point during the ICU stay, 

Figure 1  
Patient selection 
flowchart
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8 pm. From 8 pm on, the patient no longer 
needs fluids or vasopressors. For this patient, 
a total of 19 samples (8 pm – 1 am) for each 
of the variables from ▶ Table 1 are passed to 
the model. The outcome variable is also 
formed by 19 samples where from 1 am to  
8 am (2 hour prediction window) they would 
take the value 0, from 8 am to 2 pm the value 
1, and from 2 pm until the 8 pm again the 

The variables included represent time 
series, where the number of samples depends 
on the amount of time a patient received 
fluids. An example of the first scenario of 
▶ Figure 2a would be a patient starting re-
ceiving fluids at 1 am and requiring vaso-
pressors at 10 am. After 6 hours receiving 
 vasopressors (4 pm) the patient no longer 
needs them and starts receiving fluids until  

fluid resuscitation via normal saline or lac-
tated Ringer’s solution at a 250 mL/hour 
rate, for more than one hour. The criteria 
for the outcome variable was the use of a 
vasopressor for more than two hours fol-
lowing initiation of the above-mentioned 
fluid resuscitation. Thus, we looked for pa-
tients who required additional fluid resus-
citation in the ICU and predicted among 
these patients, which ones would respond 
and which ones would proceed to require 
vasopressors. A flowchart of the inclusion 
procedure is depicted in ▶ Figure 1. 

We addressed elements of data prepro-
cessing as follows: 1) missing data was im-
puted consistent with the accepted last 
value carried forward method [9, 10]; 2) 
outliers were addressed using the inter-
quartile range method [9]; 3) normaliza -
tion of the data used the min-max pro-
cedure; and 4) data time points were 
rounded to closest heart rate samples using 
a gridding approach [12]. As previously 
mentioned, the primary outcome variable 
was vasopressor administration, and for 
modeling purposes this outcome was de-
fined as binary: one if vasopressors were 
administered and zero if vasopressors were 
not administered (▶ Figure 2). For both 
outcomes, fluids were a prerequisite repre-
senting some attempt at fluid resuscitation, 
and we critiqued for normal saline and lac-
tated Ringer’s solutions as the most com-
monly used infusions, and the infusions of 
choice for hypovolemic shock as recom-
mended by the College of Surgeons [13, 
14]. The list of vasopressors applicable to 
the data extraction and recommended by 
expert advisors included: phenylephrine, 
norepinephrine, dopamine, vasopressin, 
and epinephrine. 

Figure 2 Two case scenarios: a) patient is non-responsive to fluid resuscitation (>250 mL/hour) and vasopressor therapy is required in the next two hours; 
b) patient is responsive to fluid resuscitation (>250 mL/hour) and does not require vasopressors in the next two hours (fluid resuscitation is maintained at 
>250 ml/hour, replaced by fluid management protocol at <250 mL/hour). t0 – initial time of analysis; t – current time; t + 2 h – prediction time.

No. of patients, n

Age, yr

Male, %

Mortality, %

Hospital LOS, days

ICU LOS, days

Mean APACHE III*

Mean SOFA

Time between admission and initiation of 
fluid resuscitation, hours

Total time receiving fluid resuscitation, 
hours

Total volume of fluids received, ml

Rate of fluids administration, mL/hour

Patients on vasopressors, %

Time between initiation of fluid resusci-
tation and initiation of vasopressors, hours

Total time receiving vasopressors, hours

n/a – non applicable
NS – not statistically significant (p>0.05)
* due to the lack of data neurologic abnormalities (0 – 48 points) and chronic health evaluation 
(0 – 23 points) were not added to the score

All

2944

67 (12)

56.4

46.1

13 (7.0)

6.0 (4.9)

62(12)

9 (6.5)

6.5 (28.3)

4.8 (7)

3000 (4600)

667 (510)

57.6

4 (12.6)

1.8 (8)

Pneumonia

802

68 (12)

55.8

58.7

20 (10.5)

12.0 (4.4)

63 (13)

9 (6)

15(69)

5 (7)

3000 (5000)

576 (460)

40.9

7 (16)

5 (12)

Pancreatitis

143

59 (12.3)

55.9

50.3

19 (10.3)

11.5 (3.9)

63 (12)

10 (7)

8.0 (45.1)

6.6 (10.8)

4500 (5500)

638 (606)

49.6

4 (11)

7 (14)

p-value

n/a

<0.01

n/a

n/a

NS

NS

NS

NS

NS

< 0.05

<0.01

NS

n/a

NS

< 0.05

Table 1 Baseline characteristics of the study populations of patients. Values were measured as medi-
an (interquartile range) or % (n/total). ICU – intensive care unit; LOS – length of stay; SOFA – Sequential 
Organ Failure Assessment.
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Variables (units)

Heart Rate (beats/min)

Temperature (C)

SpO2 (%)

Respiratory Rate (breaths/min)

GCS Total

Hematocrit (%)

Platelets (103/μL)

WBC – White Blood Cells (103/μL)

Hemoglobin (g/L)

RBC – Red Blood Cells (106/μL)

BUN – Blood urea nitrogen (mg/dL)

Creatinine (mg/dL)

Glucose (mg/dL)

Potassium (mEq/L)

Chloride (mEq/L)

Sodium (mEq/L)

Magnesium (mg/dL)

NBP – Non-invasive systolic blood pressure (mmHg)

NBP – Non-invasive mean blood pressure (mmHg)

Arterial pH

Arterial Base Excess (mEq/L)

Lactic Acid (mg/dL)

Urine Output (mL)

Age (yr)

SOFA

All patients

Odds Ratio 
(95% CI)

1.06
(1.02 – 1.10)

0.86
(0.82 – 0.89)

0.89
(0.86 – 0.93)

0.92
(0.88 – 0.96)

0.62
(0.59 – 0.65)

1.31
(1.25 – 1.37)

0.56
(0.53 – 0.59)

1.69
(1.62 – 1.76)

1.37
(1.32 – 1.42)

1.28
(1.23 – 1.33)

1.02
(0.98 – 1.06)

1.58
(1.52 – 1.63)

0.86
(0.82 – 0.90)

1.40
(1.35 – 1.46)

0.98
(0.94 – 1.02)

0.52
(0.50 – 0.55)

1.15
(0.95 – 1.38)

0.39
(0.37 – 0.41)

0.47
(0.45 – 0.49)

0.54
(0.52 – 0.57)

0.38
(0.36 – 0.40)

2.0
(1.97 – 2.11)

0.73
(0.69 – 0.76)

1.19
(1.14 – 1.24)

1.62
(1.54 – 1.70)

p-value

0.0056

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.243

< 0.001

< 0.001

0.36

< 0.001

< 0.001

0.003

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

Pneumonia

OR 
(95% CI)

0.94
(0.88 – 1.01)

0.77
(0.72 – 0.83)

0.86
(0.81 – 0.93)

1.12
(1.04 – 1.20)

0.70
(0.65 – 0.76)

1.28
(1.19 – 1.37)

0.46
(0.42 – 0.50)

1.62
(1.50 – 1.74)

1.35
(1.26 – 1.45)

1.12
(1.04 – 1.21)

1.06
(0.99 – 1.14)

1.55
(1.47 – 1.65)

1.05
(0.97 – 1.13)

1.01
(0.94 – 1.09)

1.22
(1.13 – 1.31)

0.65
(0.60 – 0.70)

0.98
(0.91 – 1.06)

0.37
(0.33 – 0.40)

0.45
(0.41 – 0.49)

0.47
(0.44 – 0.50)

0.32
(0.30 – 0.35)

2.18
(2.05 – 2.31)

0.66
(0.60 – 0.72)

1.09
(1.02 – 1.17)

1.52
(1.40 – 1.65)

p-value

0.16

< 0.001

< 0.001

0.0027

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.0016

0.089

< 0.001

0.22

0.67

< 0.001

< 0.001

0.74

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.015

< 0.001

Pancreatitis

OR 
(95% CI)

0.69
(0.59 – 0.81)

0.43
(0.37 – 0.51)

1.02
(0.87 – 1.21)

0.97
(0.82 – 1.13)

0.57
(0.48 – 0.67)

1.60 
(1.36 – 1.89)

0.42
(0.34 – 0.51)

1.85
(1.55 – 2.19)

1.93
(1.63 – 2.27)

1.72
(1.45 – 2.03)

0.73
(0.61 – 0.88)

1.36
(1.19 – 1.57)

0.70
(0.59 – 0.84)

1.06
(0.91 – 1.25)

1.16
(0.91 – 1.25)

0.69
(0.58 – 0.82)

1.31
(1.11 – 1.54)

0.54
(0.45 – 0.65)

0.57
(0.48 – 0.67)

0.41
(0.34 – 0.48)

0.49
(0.39 – 0.61)

3.09
(2.69 – 3.58)

1.25
(1.05 – 1.48)

1.23
(1.40 – 1.25)

0.77
(0.67 – 0.90)

p-value

< 0.001

< 0.001

0.770

0.662

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.002

< 0.001

0.001

0.425

0.07

< 0.001

0.002

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.012

< 0.001

0.007

Table 2 List of variables considered and respective univariate regression analysis. All lab-related variables refer to serum measurements. OR – odds ratio;  
CI – confidence intervals.
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where, K is the number of rules, x is the 
input vector, M is the number of inputs 
(features), AiM is the antecedent fuzzy set 
and y is the consequent function (output) 
for rule Ri . The overall output is deter-
mined through the weighted average of the 
individual rule outputs. Given that this is a 
classification problem, and that we have a 
linear consequent, a threshold t is required 
to turn the continuous output y  [0, 1] 
into the binary output y  {0, 1}. In this 
way, if y < t then y = 0, and if y ≥ t then 
y = 1. This threshold t was determined dur-
ing the feature selection stage (by maximiz-
ing the value of AUC) and used during the 
model validation stage. The number of 
rules K, the antecedent fuzzy sets AiM and 
the consequent parameters are determined 
using fuzzy clustering in the product space 
of the input and output variables [20]. 
These models were developed based on the 
Matlab Fuzzy Logic Toolbox.

2.2.1 Feature Selection

Feature selection (FS), from the clinical point 
of view, is a process that reveals new predic-
tive variables that had not been previously 

 patients with enough measurements; and 
iv) all chosen inputs should be independent 
with minimal correlation. 

2.2 Model Definitions and 
 Construction

Fuzzy modeling (FM) was selected as a 
modern approach with rules-based out-
comes particularly suited to clinical scenar-
ios. Fuzzy modeling is a tool that captures 
subjective clinical decision making in a 
non-linear algorithm that is then suitable 
for computer implementation [18]. This 
approach is appealing as it provides not 
only a transparent, non-crisp model, but 
also a linguistic interpretation in the form 
of if-then rules, which can potentially be 
embedded into clinical decision support 
processes [19, 20]. In this work, first-order 
Takagi-Sugeno (TS) fuzzy models [19] 
were used.

In this work, first-order Takagi-Sugeno 
(TS) fuzzy inference systems [19] were used, 
which are described by rules of the type:

Ri: If x1 is Ai1 and … and xM is AiM
then y = ax + b, i = 1, 2, …, K

value 0. Bringing together all samples for 
each variable and for all patients forms the 
complete dataset. This complete dataset is 
then randomly divided into two subsets: one 
for feature selection and another for model 
validation.

Our modeling was undertaken on two 
disease-based groups of patients, one with 
an ICD-9 diagnosis of pneumoniaa and an-
other with an ICD-9 diagnosis of pancre-
atitisb. These two models were then com-
pared to all subjects representing the gen-
eral ICU population. The choice of pancre-
atitis and pneumonia reflected both good 
patient numbers, but also the belief that 
these two disorders are anatomically and 
pathologically distinct which would im-
prove modeling performance and clinical 
applicability. The choice of ICD-9 codes for 
patient selection was based on the same 
 approach used by Angus et al. [15] and 
Martin et al. [16]. However, as argued else-
where [17], ICD-9 administrative data may 
not accurately reflect the true prevalence of 
comorbidities in hospitalized patients, so 
we also employed natural language pro-
cessing (NLP) to supplement the identifi-
cation of patient cohorts. This NLP was 
performed using a very simple word seg-
mentation of the physicians and nurses’ 
notes, and identification of a set of key-
words. Keywords for pneumomia included: 
“pneumonia”, “pneum” and “pna”; key-
words for pancreatitis included: “pancreati-
tis”, “sap” and “pctt”.

For inputs to the model we utilized the 
twenty-five variables shown in ▶ Table 2. 
These were determined with expert advice 
and adhering to the following criteria: 
i) routinely acquired ICU variables (e.g., 
bedside monitors and laboratory tests); 
ii) pneumonia severity index and Ranson’s 
criteria for acute pancreatitis; iii) the vari-
ables selected as inputs were limited by 

Figure 3 Evolution of area under receiver-operating curve (AUC) along with the stepwise inclusion of 
each of the variables pertaining to each best fitted fuzzy modeling (FM) for: a) All patients, b) Pneu-
monia and c) Pancreatitis patients.

a Pneumonia ICD-9 codes: 003.22; 020.3; 020.4; 
020.5; 021.2; 022.1; 031.0; 039.1; 052.1; 055.1; 073.0; 
083.0; 112.4; 114.0; 114.4; 114.5; 115.05; 115.15; 
115.95; 130.4; 136.3; 480.0; 480.1; 480.2; 480.3; 
480.8; 480.9; 481; 482.0; 482.1; 482.2; 482.3; 482.30; 
482.31; 482.32; 482.39; 482.4; 482.40; 482.41; 
482.42; 482.49; 482.8; 482.81; 482.82; 482.83; 
482.84; 482.89; 482.9; 483; 483.0; 483.1; 483.8; 
484.1; 484.3; 484.5; 484.6; 484.7; 484.8; 485; 486; 
513.0; 517.1 

b Pancreatitis ICD-9 codes: 577.0; 577.1; 577.2; 577.8; 
577.9; 579.4
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considered relevant to a given medical condi-
tion. From the engineering point of view, it is 
a crucial step in order to reduce model com-
plexity and remove inputs that are redundant 
or do not improve the classification perform-
ance [20]. In Mendonça et al., a detailed de-
scription of the sequential forward selection 
search approach used here is reported [21]. 
Briefly, a model is built for each of the fea-
tures in consideration and evaluated using a 
certain performance criterion. The feature 
that returns the best value of the performance 
criterion is the one selected. Then, other fea-
ture candidates are added to the previous best 
model, one at a time, and evaluated. Again, 
the combination of features that maximizes 
the performance criterion is selected. This 
procedure is repeated until the value of the 
performance criterion stops increasing. In the 
end, all the relevant features for the con -
sidered process should be obtained. Dis-
crimination based on the area under the re-
ceiver-operating curve (AUC) [23, 24], was 
used as the performance criterion in our 
study. The main advantage of this technique 
relates to its simplicity, graphical representa -
tion, and transparent interpretation of the 

 results, while the main disadvantage relates to 
fact that it is greedy and thus susceptible to 
finding local maxima [22].

2.2.2 Statistical Analysis

In the present work, we used the t-test as 
the test statistic to evaluate the hypothesis 

that the different between the means is sig-
nificant. This test was applied to the means 
of the AUC, Specificity and Sensitivity, 
comparing each group of patients’ models 
in a pair-wise fashion. 

2.2.3 Model Construction

To train and test the models, the dataset 
was initially randomly divided into two 
subsets of the same size: one for feature se-
lection and the other for model assessment 
(MA). In the FS data subset, a combination 
of sequential forward selection with fuzzy 
modeling or logistic regression was per-
formed to find the subset of features that 
produces the best AUC. The best model 
was selected after ten rounds of training 
and testing upon the FS data subset, using 
respectively 60% and 40% of the data. This 
60/40 selection was random for each of the 
rounds.

In order to assess the validity and ro-
bustness of the discovered model, a 10-fold 
cross-validation was performed in the MA 
data subset [25]. Values of AUC, sensitivity, 
specificity and goodness of fit are reported 
for this validation step. 

To further test our hypothesis and to as-
sess the validation of the models, we have 
tested two additional scenarios. The first 
consisted of applying the general model 
generated using the all patient’s FS dataset, 
on the pneumonia and pancreatitis MA da-
tasets, respectively. This scenario tests the 
performance of the models when similar 
patients populations are used. The second 
scenario tests the performance of the 
 models when similar features are used. We 
have created two additional models on the 
MA dataset of the general population using 
the variables selected for the pneumonia 
and pancreatitis groups, and compare them 
with the specific models developed on their 
respective populations’ MA datasets.

3. Results
From the inclusion criteria, exclusion 
 criteria, and preprocessing, a total of 
 2944 patients were selected. From these 
2944 patients, 802 had an ICD9 diagnosis 
of pneumonia and 143 an ICD9 diag- 
nosis of pancreatitis. Clinical and demo-

All Patients

Pneumonia

Pancreatitis

Number of variables 
selected

10

 6

 5

Variables selected

Arterial base excess
Lactic Acid
Platelets
Sodium
Non-invasive systolic blood pressure
White blood cells
SOFA
BUN
Creatinine
SpO2

Arterial base excess
Platelets
Non-invasive systolic blood pressure
Lactic acid
Sodium
White blood cells

Lactic acid
Platelets
Temperature
Arterial base excess
Sodium

AUC

0.83 ± 0.01

0.85 ± 0.01

0.89 ± 0.01

Table 3 List of variables selected and area under receiver-operating curve (AUC) for the best fitted 
fuzzy modeling (FM), for each patient group, model after the forward selection procedure, using the fea-
ture selection (FS) subset.

All Patients

Pneumonia

Pancreatitis

AUC

Specificity

Sensitivity

AUC

Specificity

Sensitivity

AUC

Specificity

Sensitivity

0.79 ± 0.02

0.78 ± 0.03

0.79 ± 0.02

0.82 ± 0.02

0.81 ± 0.03

0.82 ± 0.04

0.83 ± 0.03

0.82 ± 0.04

0.84 ± 0.03

Table 4 Results of the 10-fold cross validation 
step on the model assessment (MA) subset using, 
for each patients’ subgroup and modeling tech-
nique, the respective complete set of most predic-
tive variables derived from the feature selection 
stage.
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turned an AUC of 0.79  0.02. Respective 
AUC curves are presented in ▶ Figure 4.

Given the risk of comparing mixed sce-
narios, i.e. combining comparison using 
different features with different patient 
populations, ▶ Table 5 and ▶ Table 6 pre -
sent respectively the results corresponding 
to the performance of the models when 
similar patients populations are used, and 
when similar features are used.

From ▶ Table 5 follows that general 
models perform significantly worse (p 
< 0.05) when applied to the pneumonia 

lactic acid, and platelets are common to all 
of the groups. Pneumonia patients add 
non-invasive systolic blood pressure and 
white blood cells, and pancreatitis patients 
add temperature to the models.

Performance metrics in ▶ Table 4 show: 
i) satisfactory discrimination for all three 
groups of patients; and ii) significantly dif-
ferent (p < 0.05) values of AUC, specificity 
and sensitivity between different groups of 
patients. Pneumonia and pancreatitis pa-
tients returned an AUC of 0.82  0.02 and 
0.83  0.03, while general patients re-

graphic characteristics of these groups are 
shown in ▶ Table 1. No significant dif -
ferences were found between the pneu-
monia and pancreatitis subgroups with re-
spect to  hospital length of stay, ICU length 
of stay, APACHE III, or SOFA scores. Age 
(p < 0.05) was significantly different be-
tween the two subgroups. 

Fluid and vasopressor administration is 
also shown in ▶ Table 1. Pancreatitis pa-
tients received both a greater overall 
 volume of fluids and received vasopressors 
for longer periods than did patients with 
pneumonia. 

The effect size and p-values obtained 
from the univariate logistic regression 
analysis of the initial set of variables is 
shown in ▶ Table 2. Correlation analysis 
between the variables showed three signifi-
cantly correlated groups (p < 0.05). Firstly, 
hemoglobin, red blood cell count, and he-
matocrit; and secondly, mean non-invasive 
blood pressure and systolic non-invasive 
blood pressure, and thirdly arterial pH and 
arterial base excess. To strengthen the 
analysis we removed hemoglobin, red 
blood cell, mean non-invasive blood 
 pressure, and arterial pH.

With regards to the number of rules 
generated, 4 rules (deriving from 4 
clusters) were obtained for the general pa-
tients group while 3 rules were obtained for 
the pneumonia and pancreatitis groups.
▶ Figure 3 shows the cumulative step-

wise performance contribution of each of 
the variables to the relevant models. From 
this figure, it is can be seen that only a few 
of the first variables significantly (p < 0.05) 
increase the value of AUC. In other words, 
the first variables selected by the forward 
selection approach have a significantly 
higher contribution to the models than the 
remaining variables. Arterial base excess, 

Figure 4 Receiver-operating curves (ROC) of the most predictive fuzzy model for all patients, pneu-
monia patients and pancreatitis patients

AUC

Specificity

Sensitivity

Pneumonia patients 
(all patients’ features)

0.76 ± 0.02

0.74 ± 0.03

0.76 ± 0.03

Pancreatitis patients
(all patients’ features)

0.78 ± 0.03

0.77 ± 0.02

0.78 ± 0.04

Table 5 Results of the 10-fold cross validation step on the model assess-
ment (MA) subset of the pneumonia and pancreatic patients, using the gen-
eral model developed in the feature selection stage

AUC

Specificity

Sensitivity

All patients
(pneumonia features)

0.77 ± 0.03

0.77 ± 0.02

0.76 ± 0.03

All patients 
(pancreatitis features)

0.75 ± 0.04

0.76 ± 0.03

0.73 ± 0.03

Table 6 Results of the 10-fold cross validation step on the model assess-
ment (MA) subset of the general population, using pneumonia and pancre-
atitis most predictive features from the feature selection stage
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and pancreatitis MA datasets, as compared 
to using the best-fitted pneumonia and 
pancreatitis models in the same datasets. 
From Table 6 follows that using pneumonia 
and pancreatitis best features in the general 
patient population dataset leads to signifi-
cantly inferior (p < 0.05) results than using 
this features in the respective patients’ 
populations.

To crosscheck our findings, we com-
pared the models with a more traditional 
modeling approach using logistic regres-
sion. We observed the same phenomenon: 
namely, a core set of variables common to 
all three groups, and different variables 
added to the pneumonia and pancreatitis 
sub-groups. We note different variable se-
lection between the fuzzy logic and logistic 
regression models, and this is explainable 
with a more detailed description of the 
 modeling algorithms. However, this differ-
ence does not detract from the key findings 
and is not a key focus of this article. Simi-
larly, during the feature selection step we 
also compared the performance of sequen-
tial forward selection with backward elim-
ination. Backward elimination selected in 
general more features, however, the per-
formance of the models did not signifi-
cantly change.

4. Discussion
Our interest in this study was primarily to 
explore the consequences for predictive 
risk modeling of a group of patients aggre-
gated together as general ICU patients, as 
compared to a more granular assessment of 
disease-based subsets of ICU patients. Our 
key finding is that variable selection is sig-
nificantly different between general patient 
groups and disease-based groups. Fur-
thermore, not only are the variables differ-
ent, but the modeling performance is also 
improved in the disease-based groups. 
Pneumonia and pancreatitis patients re-
turned, respectively, an AUC of 0.82 ± 0.02 
and 0.83 ± 0.03, while general patients re-
turned an AUC of 0.79 ± 0.02. The vali-
dation of these results was confirmed by 
the testing of two additional scenarios. The 
first tested the performance of the models 
when similar patients populations are used, 
and the second tested performance of the 

models when similar features are used. 
There are several implications from these 
findings.

Firstly, the trend towards large datasets 
and advanced analytics is opening new 
frontiers of knowledge discovery and creat-
ing opportunities for challenging existing 
models and paradigms. MIMIC II is one of 
the most complete ICU datasets. However, 
only recently we have been able to consider 
subsets of the data for specific conditions, 
such as we have studied here, with sample 
sizes that are robust enough to support 
clinical guidelines and new thinking.

Secondly, our purpose was not to make 
clinicopathological correlations between 
individual variables and the underlying pa-
thology, but rather to draw attention to the 
utility inherent in our study design which, 
utilizes common and easily acquired ICU 
data such as temperature and heart rate. 
These features are likely to increase usabil-
ity and have meaningful application in low 
resource environments.

Thirdly, these results could have impli-
cations for a number of generalized predic-
tive index scores that are currently utilized 
in ICUs. Scoring tools such as SOFA and 
APACHE are generalized predictive instru-
ments with more of a focus on physiologi-
cal parameters that may indirectly imply 
disease. For example, impaired renal func-
tion is an input into some of these general-
ized formulae and may indirectly imply a 
chronic renal disease such as glomerulo-
nephritis amongst all other renal pathol-
ogy. In contrast, patient specific disease-
based modeling can specifically use glome-
rulonephritis as an inclusion criteria, and 
bring with it into the model other associ-
ated and attendant variables that chronic 
renal disease may not. Current generalized 
index scores undoubtedly have a place as 
they are predicated on a few quick, easily-
acquired assessments, as compared to dis-
ease-based predictive risk modeling which 
is more algorithmically intensive and time 
consuming. It is possible that generalized 
and focused predictive modeling can to-
gether serve valuable goals. Index scores 
may continue to provide excellent quick as-
sessments, but when critical management 
decisions are being made at the edge of 
probabilities, disease-based models may 
more accurately inform decision-making.

There are some limitations to the analy-
sis and interpretation of these results. First, 
several variables often referred to in the lit-
erature as being related to shock and vas-
cular perfusion were not taken into ac-
count due to their inconsistent capture in 
the database. These variables include invas-
ive arterial blood pressure and central ve-
nous pressure. However this is mitigated 
with the inclusion of other significant 
blood pressure measurements including 
systolic blood pressure and mean blood 
pressure. Second, despite the goal of maxi-
mizing sensitivity while maintaining spe-
cificity, a few false negatives were still pres-
ent. This can be further explained as the 
non-detection of patients not responsive to 
fluid resuscitation (and thus more likely to 
require vasopressor therapy within 2 hours 
(false negatives)), and this may occur due 
to: i) patients simply deteriorated too fast 
(within the 2-hour window) to be caught 
by the algorithms; ii) additional informa-
tion was available to the clinician but not to 
the algorithms, and the clinicians inter-
vened due to patients’ conditions other 
than hemodynamic instability. Expert 
opinion and review of the data suggests the 
numbers of cases in this category is low. 
Finally, our findings findings of improved 
accuracy with patient subset-specific mod-
els were demonstrated in only two clinical 
conditions from a single center, and these 
findings may need to be validated in other 
scenarios using data from multiple ICUs.

5. Conclusions
Improved technology means that larger 
amounts of data can be captured daily at 
the point of care, turning specific groups of 
patients representative enough for re-
searchers to explore them. These patient-
specific data, together with modern predic-
tive modeling tools, allow challenging 
existing generalized guidelines and models 
of care. 

In this work we bring together both the 
tools and the clinical data environment to 
demonstrate the power of disease-based 
modeling compared to general modeling – 
the gold standard in clinical practice. We 
recommend further work be done to revisit 
some of the existing ICU risk models and 
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that disease-based modeling across a range 
of pathologies be explored.
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