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Abstract—Acute hypotension is a significant risk factor for in-
hospital mortality at intensive care units (ICUs). Prolonged hy-
potension can cause tissue hypoperfusion, leading to cellular dys-
function and severe injuries to multiple organs. Prompt medical
interventions are thus extremely important for dealing with acute
hypotensive episodes (AHE). Population level prognostic scoring
systems for risk stratification of patients are suboptimal in such
scenarios. However, the design of an efficient risk prediction
system can significantly help in the identification of critical care
patients, who are at risk of developing an AHE within a future
time span. Towards this objective, a pattern mining algorithm is
employed to extract informative sequential contrast patterns from
hemodynamic data, for the prediction of hypotensive episodes.
The hypotensive and normotensive patient groups are extracted
from the MIMIC-II critical care research database, following
an appropriate clinical inclusion criteria. The proposed method
consists of a data preprocessing step to convert the blood pressure
time series into symbolic sequences, using a symbolic aggregate
approximation algorithm. Then, distinguishing subsequences are
identified using the sequential contrast mining algorithm. These
subsequences are used to predict the occurrence of an AHE in a
future time window separated by a user-defined gap interval.
Results indicate that the method performs well in terms of
the prediction performance as well as in the generation of
sequential patterns of clinical significance. Hence, the novelty of
sequential patterns is in their usefulness as potential physiological
biomarkers for building optimal patient risk stratification systems
and for further clinical investigation of interesting patterns in
critical care patients.

Index Terms—Acute hypotension, Mean arterial pressure,
Symbolic sequences, Sequential pattern mining

I. INTRODUCTION

IN the past few years, there has been a significant rise in
patient monitoring devices aggregating large-scale patient

data in intensive care units. Typically, most of this huge
volume of data has remained underutilized, leading to slower
progress in medical research. However, with increasing de-
mand on healthcare organizations, there is now an urgent
necessity to provide improved access and quality of care
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at lesser costs. As evidence obtained from modern data-
driven techniques have contributed to significant advances in
critical care patient diagnosis, such efforts have resulted in an
improved understanding of diseases and guided appropriate
medical interventions.

Appropriate clinical diagnosis of impending critical events
is extremely important in an ICU, since rapid physiological
changes cause critical patient instabilities that require imme-
diate medical interventions. Conventional early warning mon-
itoring systems turn out to be suboptimal in such cases. Exist-
ing systems embed a set of predefined clinical rules, which act
on vital signs data, to raise an alarm reactively. Moreover, they
are also known to generate a significant number of false alarms
in ICUs [2]. In addition, the current systems do not account
for the dynamic nature of complex physiological processes in
a given time period. Hence, there exists a need for predictive
technologies, which can act proactively for advanced medical
decision-making in critical care units.

Hemodynamic monitoring is an essential mechanism in
ICUs generating a significant amount of streaming blood
pressure (BP) data. Acute hypotensive episodes (AHE) are
defined as a sudden drop of patient blood pressure spanning
over an extended time period. An AHE can lead to decreased
tissue perfusion, which in turn can be a cause of multiple organ
damages. Hemodynamic instabilities can be life-threatening to
the concerned patients. On the other hand, if such instabilities
are detected ahead of time to limit the effects of a life
threatening event, then there are significant benefits associated
with the outcomes.

The effectiveness of medical outcomes is generally assessed
by the risk of mortality and also involves the costs of treat-
ment. For critical care patients, these factors tend to rise with
time. Thus, the effectiveness of individual medical outcomes
is strongly dependent on well-informed patient interventions.
Proactive interventions are staged on the basis of clinical evi-
dence of impending events. Such evidence needs to have two
significant characteristics viz. predictive capability and clini-
cal interpretability. The importance of clinical interpretability
stems from the requirement of a clinician’s enhanced degree
of understanding of the patient’s physiological condition. Such
knowledge is fundamental for the selection of an optimal
treatment plan.

A knowledge discovery based predictive system can meet
this demand. Usually, such a predictive system takes into
account time-based micro physiological events during a pa-
tient’s ICU stay. It is able to make significant associations
of interpretable clinical evidence to future hemodynamic be-
haviour. Accordingly, it has a strong potential for a reduction
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in operational costs, increase in efficiency, the development
of novel goal directed treatments and scheduling of additional
ICU services.

The aim of this study is to identify discriminative hemody-
namic sequential patterns via a novel data mining method for
the risk stratification of ICU patients. These patterns are later
utilized to distinguish hypotensive episodes from normotensive
cases.

The informative sequential patterns are extracted from a
large-scale patient population in the MIMIC-II critical care
research database [3]. The MIMIC-II (Multiparameter Intel-
ligent Monitoring in Intensive Care) database is a publicly
available critical care data resource, encompassing a diverse
and large population of ICU patients over the last 10 years.
It comprises of high resolution temporal data including lab
results, discharge notes, physiological trends and waveforms.
The database has been widely used to support numerous re-
search studies in the fields of epidemiology, clinical decision-
rule improvement, and ICU alarm systems.

One important novelty of the current study is the applica-
tion of a sequential contrast pattern mining strategy in the
extraction of clinical episodes of arbitrary length, which are a
characteristic of specific critical conditions like an AHE. The
present study can thus meet the need to generate novel medical
insights from the data of intensive care units and discover
clinically relevant episodes separated by time windows.

Overall, our contributions made by this study include: (i) the
application of a contrast pattern mining technique in the field
of critical care informatics, (ii) a new method for generating
predictive alerts for hypotensive episodes in an ICU, and (iii)
validation of our method on data extracted from a large-scale
de-identified critical care research database like the MIMIC-II.

II. PROBLEM DEFINITION

Acute hypotension is a clinical symptom showing a signifi-
cant drop in mean arterial pressure (MAP) values for extended
periods of time. The mean arterial pressure is often used in
medicine as a popular measure of blood pressure, which can
be derived from the systolic (SP) and diastolic pressure (DP)
as given by equation (1).

MAP = [2(DP ) + SP ]/3 (1)

Fig. 1. Acute Hypotensive Episode over a time period exceeding 30 minutes,
when MAP 6 60 mmHg

Although hypotension is not categorized as a disease state, it
is considered to be a frequent ailment among the general popu-
lation and especially among females. Owens et al [28] reported

a prevalence of 49% hypotensive patients in a prevalence study
of a general population cohort. Existing studies have indicated
that hypotension is associated with morbidities stemming from
dizziness and fatigue. Hypotensive subjects have previously
demonstrated lower blood pressure, along with lower weights
and had lesser likelihood of a family history of vascular
disease or hypertension. However, in a diagnostic setting,
actual prevalence can be dependent upon associated stress,
anti-hypertensive medications and diuretics [23]. Neurological
diseases are also associated with an increasing likelihood of
AHEs in an ICU. Depending on various definitions of hypoten-
sion, MAP values falling below the threshold range of 60-
80mmHg for 30 minutes, could trigger an acute hypotensive
episode. Figure 1 illustrates such a scenario, where MAP
values sustain below 60 mmHg for a time period≥ 30 minutes.

A. A Formulation of the AHE Prediction Problem

Numerous studies report that hypotension could lead to
critical events like acute kidney injury, severe sepsis, acute
coronary syndrome and shock [46], [47], [48], [21]. To enable
prompt interventions, it is therefore important to predict an
AHE ahead of time. Predicting an AHE can be formulated
as a problem of classification of an admitted patient’s mean
arterial pressure into a hypotensive or normotensive regime.
The prediction of the mean arterial pressure in a future time
window is central to the current study. An illustration of the
AHE prediction problem is provided in Figure 2.

Fig. 2. Observation and Target Windows with a Time Gap Interval

According to Figure 2, an user-defined MAP time series
observation window of length 30 or 60 minutes, is provided
as historical data. The time series observation window is
subsequently utilized to predict the given MAP’s class (hy-
potensive or normotensive) in a future target window of 30
minutes. Moreover, the observation and the target windows
are separated by an user-defined gap interval of 60 and 120
minutes. The problem can be interpreted as that of performing
an AHE prediction in a future time window, given the MAP
observation data and a gap interval of one or two hours
between the observation and the forecasting time windows.

B. Related Work

There have been a number of studies using pattern recog-
nition techniques for the analysis of hypotensive behaviour.
Wavelet-based similarity measures from blood pressure time
series had been proposed to predict vasopressor onsets [6].
Ghaffari et al [7] have demonstrated the use of Hilbert-
transform based techniques for predicting AHEs. In 2009,
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the Physionet AHE prediction challenge was instituted to
advance the development of state-of-the-art techniques [5],
including neural networks, support vector machines and nu-
merous statistical indices as features, for the prediction of
AHE [8], [9], [12]. In some of these cases, historical time
windows used for observations were considered as five minutes
prior to the onset of an AHE. Accordingly, Wang et al [13]
have reported that medical pattern extraction was particularly
challenging, owing to their longitudinal and sparse nature.
While addressing this concern, Syed et al [14] reported the
development of motif mining methods, which were tested
on long-range cardiovascular time series datasets. Moreover,
Lee and Mark [15] reported the extraction of hemodynamic
patterns for hypotension through artificial neural networks.
Recently, Ghassemi et al [51] demonstrated the application
of global optimization techniques for principal extraction of
dynamical features, which are more predictive of patient out-
comes than severity of illness scores accounting for multiple
non-dynamic features of the patient.

For the area of predictive data mining for monitoring
applications, previous research has reported the development
of numerous pattern mining techniques. Typically, existing
research tends to identify problems in either of two directions
viz. short-term predictive modelling with the objective of
generating daily alerts for physicians or long-term predictive
modelling aimed at population level prognosis [22]. Moni-
toring systems help in capturing signals that can be used
to identify time varying phenomenon, instead of traditional
generation of alerts, which are known to generate a lot of
false reports [24]. To overcome this weakness, intelligent
noise removal methods are used as low pass filters which
can aggregate high resolution signal frames and a number of
good measurements [25]. The processed input is then used for
classification and regression problems, although the concerned
method may or may not consider temporal aspects of the
data. A wide range of ICU prediction tasks focus on the
extraction of statistical features from medical time series and
making them time-independent. For example, impending ICU
physiological instability has been predicted by decision rules
from time series data [26]. Bayesian artificial neural networks
were employed for observation windows 15 and 30 minutes
before hypotension for traumatic brain injury subjects resulting
in 86% specificity and 41% sensitivity [27]. Second day ICU
discharges were predicted by gaussian processes [30]. Celi
et al [29] also employed Bayesian networks to predict day-
two fluid requirements for the study of patient inflammatory
responses.

Apart from final prediction outcomes, medical decision
makers also expect to discover insights relating to the pro-
cesses employed on longitudinal patient records. Research on
such data, begins with complex data transformation procedures
by developing temporal abstractions to represent temporal
relations between time intervals. Previous studies have re-
ported the extraction of meaningful temporal patterns from
a diabetes dataset [31], [33], [38]. Prior to this, Tseng and
Lee [54], [55] had reported temporal pattern-based classifiers
for effective classification by sequences for atrial fibrillation
datasets. Additionally temporal patterns were also used to

predict the hospitalization of hemodialysis patients [35], [36].
A time-series knowledge mining method was used to discover
frequent temporal patterns for patients who required mechan-
ical ventilation for greater than 24 hours [37]. Toma et al [34]
utilized frequent temporal patterns to capture the evolution
of organ failures status in a set of patients. Temporal history
of patient event codes have also been reportedly used for
mining frequent sequences of events to understand various
illnesses [32]. In this context, Perer et al [52] demonstrated
the clinical usefulness of frequent temporal sequences by an
interactive and visual analytics platform for mining sequences
of ICD-9 codes to understand disease progression. Similar
visual analytics platforms have been shown to have a greater
clinical importance in the mining of medical event sequences
having strong associations with specific disease outcomes [53].

III. METHODOLOGY

The identification of sequential patterns is related to de-
tecting subsequences contained within training sequences. Ac-
cording to the problem constraints, well-defined representative
patterns may be grown, which display strong support in
the concerned training sequences. Sequential pattern mining
strategies can provide a useful alternative to mining interesting
patterns of physiological time series data, which may help
discover significant insights in the form of important clinical
episodes. In the following sections, we describe the various
stages viz. data extraction, pre-processing and mining of
sequential contrast patterns that are over-represented in the
hypotensive training samples and under-represented in the
normotensive samples.

A. Data Extraction

The data of the study is a relevant subset of the MIMIC-
II database, using a suitable data inclusion/exclusion criteria
[15]. The MIMIC II is a large-scale intensive care unit
database consisting of more than 30,000 patients with nu-
merous patient variables, aggregated from patient health care
records and physiological waveforms over a period of more
than 10 years. The physiological time series waveforms data
are organized into records, identified using unique patient
identifiers. A specific patient identifier may correspond to
multiple ICU stays. Thus, time series data for each ICU stay
maintains a unique ICU stay identifier. The extracted subset
of records are also satisfied the following conditions, before
extraction.
• The record had to be of an adult patient.
• Each patient time series constituted of minute-by-minute

numeric samples, for at least the mean arterial blood
pressure.

• Corresponding clinical records existed for the waveform
records in MIMIC II.

As recommended by Lee and Mark [15], we considered the
following inclusion criteria, while compiling the data exam-
ples. As described in Figure 1, each data sample comprised
of three time intervals as follows.
• a 30 or 60 minutes MAP observation window
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• a 30 minutes target window
• a time interval gap of 60 or 120 minutes, which separates

the observation and target windows.
• There exist seven categories for the ICD-9 code for hy-

potension (458.0 - 458.9) as shown in Table I. Hypoten-
sive records were selected by pattern matching over the
higher level numerical classification of 458 in MIMIC-II.

TABLE I
ICD-9 CLASSIFICATION OF HYPOTENSION

ICD-9 Code Disease
458.0 Orthostatic hypotension
458.1 Chronic hypotension
458.2 Iatrogenic hypotension

458.21 Hypotension of hemodialysis
458.29 Other iatrogenic hypotension
458.8 Other specified hypotension
458.9 Hypotension unspecified

A target window was labelled either as normotensive (con-
trol) or hypotensive. The labelling of a target window as
hypotensive (HE) was subject to satisfying a 30 minute period
of time for which MAP was less than 60 mmHg and greater
than 10 mmhg, for 90% of the time period. In contrast, a 30
minute window which did not satisfy the given HE definition
as above was labelled as a normotensive (control) sample.
Moreover, corresponding to each target window, the extracted
MAP observation windows were also verified to be within the
10-200 mmHg range.

Two data extraction mechanisms were considered viz. single
and multiple modes. For single mode compilation, a single
hypotensive or normotensive example was constructed from
each separate patient waveform record. On the other hand,
the multiple compilation mode considered a sliding window
of 30 minutes, and all those examples were constructed,
whenever satisfying the conditions for the observation and
target windows.

In addition to the datasets extracted using the given in-
clusion criteria, hypotensive and normotensive datasets were
also employed from the Physionet 2009 challenge [5]. For
the challenge datasets, their MIMIC II waveform signals were
divided into two groups viz. H (hypotensive) and C (control)
respectively. The groups H and C were further subdivided into
H1, H2 and C1, C2. Each sub-group were defined to have the
following properties.

• H1: Patients receiving pressor medication.
• H2: Patients not receiving pressor medication.
• C1: Patients with no acute hypotensive episodes during

entire hospital stay.
• C2: Patients having AHE before or after the forecast

window.

Accordingly, two challenge prediction tasks were consti-
tuted as follows.

• Event I: Patient risk classification between H1 and C1
• Event II: Patient risk classification between H and C

Moody and Lehman [5] reported that the groups H1 and C1
indicated the extremes of AHE-associated risks.

B. Data Discretization

Physiological data often comprise of repetitive elements. To
identify interesting patterns, a natural extension is to transform
the real-valued physiological time series into string representa-
tions for mining symbolic discrete patterns [14]. Subsequently,
we employed the symbolic aggregate approximation method
[16] to segment the original MAP signal into discrete intervals
and assigned an alphabetic label to each discrete region. This
process transforms the continuous MAP data into a symbolic
sequence, and enables the use of numerous pattern mining
algorithms. The symbolic aggregate approximation (SAX)
technique has emerged as a popular and efficient technique,
producing an informative symbolization of large-scale time
series data. Typically, SAX converts the continuous time series
into a piecewise aggregate approximation (PAA) form [16].
Later, the PAA series is converted to a symbolic sequence.
Each MAP time series, before being discretized, undergoes a
normalization process having a mean of 0 and variance 1. The
SAX strategy selects breakpoints using a gaussian distribution,
such that the discrete symbols are equiprobable in the time
series. For example, to transform a normalized time series
using five symbols, the discrete regions are specified by [-∞,
-0.84, -0.25, +0.25, +0.84, +∞]. The symbolic representation
adopted by SAX characterizes the inherent properties of the
time series data. Consequently, an equiprobable distribution of
symbols is maintained in the given time series [16].

In the process, SAX provides an effective discretization
platform, which can be utilized to create efficient pattern
mining and indexing algorithms for medical purposes. Figure
3 illustrates a visual representation of a real-valued time series
being converted to a symbolic form, using four symbolic
regions.

Fig. 3. Discretization by Symbolic Aggregate Approximation using 4 symbols

C. Mining gap-constrained sequential contrast patterns

In studies related to binary or multi-class classification, the
central objective is to develop a prediction model, which is
capable of distinguishing an incoming signal using its inherent
properties and assign a target label as the predicted outcome.
Typically, in data mining problems, there exists a strong
motivation to discover differentiable patterns’ characteristic
of disparate groups of data, that are used for prediction of
records. Mining emerging patterns from distinctively labelled
groups of relational data was initially introduced by Dong
and Li [17]. However, the immediate application of emerging
patterns to sequence databases was not possible owing to
ordering of a sequence, and due to multiple occurrences of
items in a sequence. Accordingly, the concept of emerging
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substrings was suggested [42]. Substrings are a special case
of subsequences, where each consecutive symbol is separated
by a gap interval of 0. Yet, an important aspect to note is
that significant sequential episodes may not manifest as con-
secutive symbols existing in time-series symbolic sequences
of interest. Thus, the identification of episodes having signif-
icant events ordered sequentially, while having arbitrary gap
intervals between events, can be extremely useful. Towards
this purpose, a number of algorithms have been reported [43].
In the present study, we intend to discover gap-constrained
contrast subsequences from disparate groups of sequence data,
using the principles of frequency support. In the following
sections, the various definitions and processes associated with
the extraction of gap-constrained sequential contrast patterns
are described.

1) Sequential Patterns: Let there be a set of distinct items
denoted as I. I can also be called the alphabet set and |I| is
the size of the alphabet set. A sequence S defined over I may
be denoted as e1 − e2 − .... − en, such that ei belongs to I
for 1 ≤ i ≤ n. Accordingly, we consider univariate sequences
where ei represents a single item from I. A sequence S′ =
ei1 − ei2 − ... − eim is said to be contained in a sequence
S = e1−e2−e3−...−en, such that 1 ≤ i1 ≤ i2 ≤ ≤ im ≤ n.
For example, a subseqeunce CD is contained in CAAD, but not
DC. Hence, the order of the sequence S′ is maintained in S,
although items in S′ are not consecutive in S. This indicates
the existence of gap intervals between the items of S′.

Definition 3.3.1.1: (Max-Prefix) The max-prefix of the se-
quence S = e1− e2− ...− ek is given by e1− e2− ...− ek−1.
It constitutes the leading sequence of elements in S, without
the final item of S.

Definition 3.3.1.2: (Occurrence of a Subsequence) Given the
sequences, S = e1−e2−....−en and S′ = ei1−ei2−....−eim ,
S′ occurs in S if 1 ≤ ik ≤ n and ek = eik for all 1 ≤ k ≤ m,
and ik ≤ ik+1 for 1 ≤ k ≤ m. For example, given sequences
S = XZXZY ZY and subsequence S′ = XY , there are four
occurrences of S′ in S at the positions - {1, 5}, {1, 7}, {3, 5}
and {3, 7}.
Definition 3.3.1.3: (Satisfaction of Gap Constraints) Con-
sider a sequence S = e1 − e2... − en and an occurrence
O = i1, i2, ..., im of a subsequence S′, if (ik+1− ik) ≤ g+1,
such that |k| ∈ {1, ...,m− 1}, then S′ for the occurrence O,
fulfills the gap constraint of g. Moreover, fulfilling the gap
constraint once, in a given sequence serves the condition of
gap-constraint satisfaction. For example, if g = 2, then XY
is a subsequence of XZY , but not XZZZY .

Now, let us consider D = {D1, D2, . . . , Dn} as a set of
sequences in a database, a sequential pattern P , and a gap-
constraint of g, then the frequency of occurrences of P in D is
given by countP (D, g), also known as the absolute frequency
support of P in D. If there exists a frequency support threshold
α and P satisfies a condition such as countP (D, g) ≥ α, then
P is is said to be frequent in D, with a gap constraint of g.

Definition 3.3.1.4: (Gap constrained sequential contrast
patterns) Given two sets of sequence datasets D+ (positive
sequences) and D−(negative sequences), two thresholds α and

δ, and a maximum gap of g, a gap-constrained sequential con-
trast pattern P is required to satisfy the following conditions.

(1) Positive Support: countP (D+, g) ≥ α
(2) Negative Support: countP (D−, g) ≤ δ
Thus given D+, D−, α, δ and g, mining the gap-constrained

sequential patterns involves finding the set of all such subse-
quences that fulfill the given conditions from (1) to (2).

2) Generation of Candidate Sequences: Towards finding
the set of all gap-constrained contrast sequential patterns,
we employ the ConSGapMiner algorithm [18], which was
earlier used to extract minimal distinguishing subsequences
(MDS) with user-defined gap constraints. The method utilizes
the depth first search (DFS) technique for the generation of
candidate sequences. This is done by growing a lexicographic
sequence tree (LST) as shown in the example in Figure 4. Each
node in the LST embeds a subsequence, along with its positive
and negative frequency supports. In addition, each node is a
max-prefix of its children.

Fig. 4. A Lexicographic Sequence Tree (LST) growing candidate sequences
using 3 symbols as A, B, C

Pruning non-minimal subsequences: After a sequence node
is generated, if it satisfies the conditions (1) and (2), then
the sequence node is not extended further. A supersequence
of a potential contrast sequence is not minimal [18]. Thus,
restricting the growth of sequences by a minimality condition,
helps in the reduction of redundant patterns.
Pruning of infrequent subsequences: If a sequence node’s
positive frequency support is less than α (as specified in
condition (1) ) , then the concerned node need not be extended.
This is because, supersequences of an infrequent max-prefix
are also infrequent.

3) Gap Constraint Verification: For the verification of gap-
constraint satisfaction, we employed a bitmap representation
reported earlier for checking gap-constraints [41]. The bitmap
process is explained by an example, as shown in Table II. Let
us consider verifying the gap constraint of XY in XZXZY ,
given maximum gap g is set to 2. In the first step, all the
occurrences of X in the concerned sequence are set to 1 (as
shown in Xindex). These are position indices given by 1 and 3.
Later, (g+1) index positions are set to 1 for each occurrences
following X , separately as illustrated in rows 3 (given as 1X )
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and 4 (given as 2X ). Following this, the bit vectors in rows
3 and 4 go through a logical OR operation, as given in row
5. Subsequently, a logical AND operation is performed on the
bit vectors in row 5 and for the occurrences of Y in row 6, to
obtain a final bit vector, in row 7. An occurrence of 1 in the
final bit vector (at row 7) indicates that the gap constraint of
g = 2 was satisfied.

TABLE II
CHECKING GAP CONSTRAINT SATISFACTION OF XY IN XZXZY

X Z X Z Y
Index 1 2 3 4 5

Xindex 1 0 1 0 0
1X 0 1 1 1 0
2X 0 0 0 1 1

1X(OR)2X 0 1 1 1 1
Y 0 0 0 0 1

AND 0 0 0 0 1

Finally, a post-processing step is applied such that any
supersequence of at least another shorter subsequence, is
removed from the resulting set of contrast sequences. The al-
gorithm for the generation of candidate sequences is provided
by Algorithm I.

Algorithm 1 Generation of candidate sequences
candGen(c, g, I, δ, α)

1: Require : c − sequence, g − maximum gap, I −
alphabet, α − maximum positive support, δ −
minimum negative support

2: ds← φ {ds holds the distinguishing children of c}
3: for i ∈ I do
4: if c+ i is not a supersequence of any sequence in ds

then
5: nc← c+ i
6: supppos = SupportCount(nc, g, pos)
7: suppneg = SupportCount(nc, g, neg)
8:
9: if supppos > αANDsuppneg 6 δ then

10: ds← ds ∪ nc
11: else
12: if supppos ≥ α then
13: candGen(c, g, I, δ, α)

14: DS ← DS ∪ ds

IV. PREDICTION RESULTS

The sequential contrast pattern mining methodology was
applied to both single-mode and multi-mode datasets, based
on a clinical inclusion criteria, similar to principles used in
[15]. From the MIMIC-II database, we extracted 253 segments
(single mode) and 759 segments (multi-mode), which satisfied
the criteria of hypotension. For the normotensive group, 274
segments were compiled for single mode whereas for multi-
mode the exact number of segments varied from 133712 to
140006.

In addition, we also applied our techniques to the datasets
provided by the Physionet 2009 AHE prediction challenge
[5]. In particular, the AHE challenge datasets had also been

extracted from the MIMIC-II database in 2009. Our single-
mode and multi-mode datasets tend to extend these datasets,
since MIMIC-II has undergone multiple version updates, in
the past 10 years. For the Physionet challenge, each of H1,
H2, C1 and C2 groups consisted of 15 samples for training
purposes. For test sets, Event I included 10 samples (H1=5,
C1=5), while Event II had 40 (H=14, C=26). For the challenge
data, an example training record like a40439 contains a T0
time-annotation, indicated as 18.30 on 04/09/2008 (T0 was
provided with each record). The time series data prior to T0 is
used for training purposes (treated as the observation window).

For the prediction of a record, a majority vote of contrast
sequences is considered for the record to be treated as hypoten-
sive. Single and multimode datasets extracted for the present
study are available via https://github.com/s-ghosh/hypotension

A. Prediction performance on the two data sets

On the first data set, our 5-fold cross-validation classifica-
tion results for both the single mode and multi-mode cases
are summarized in Table III and IV. As can be noted, the
classification results for the single mode executions are much
better than multi-mode executions. This is because the single
mode cross-validation accuracies are higher than multi-mode
accuracies. A lower specificity in single mode executions can
be attributed to the balanced nature of the single mode datasets.
In contrast, the multi-mode datasets consist of a significantly
higher percentage of instances, which are normotensive (for.
e.g, 759 H to 140006 N). A sensitivity of 100% in our exper-
iments, indicates that the sequential contrast method was able
to predict all AHE instances correctly. Typically, the number
of AHE instances are much fewer in comparison to non-
AHE instances. As a result, the contrast pattern set generated
due to the imbalance, can also consist of patterns which
fulfill support conditions among non-AHE instances. Owing
to this reason, contrast sets are highly capable of identifying
positive instances. However, lower specificities reflect that a
high percentage of false positives are also generated. Thus, our
method demonstrates good performance when employed in the
prediction of an AHE. This means sequential contrast patterns
are effective in detecting hypotensive behaviour. However,
since similar blood pressure patterns also exist across both
population groups, a lot of negative instances are incorrectly
classified as hypotensive. Similar experiments on MIMIC-II
by Rocha et al [50] demonstrated a sensitivity of 82.8% and
a specificity of 78.4%. In another study, Lee and Mark [15]
also demonstrated highest accuracies of 76% for single-mode
and 86% for multi-mode datasets extracted from MIMIC-II.
Moreover, increasing the size of the observation window does
not result in significant improvements in performance. Also,
increasing gap intervals from 60 to 120 minutes lead to a
drop in performance. Specifically, the hypotensive (positive)
segments were always predicted correctly in both the modes.

Generally, retrospective EHR based population comparison
studies tend to have imbalanced datasets, where the count of
positive instances is very small as compared to the negative
instances. As a possible enhancement, contrast pattern sets can
be post-processed using multi-objective optimization methods
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to obtain the most optimal combinations of contrast sequences
for building models, which demonstrate better specificity,
while reporting a higher classification performance.

For the Physionet 2009 challenge dataset, the test prediction
results are presented in Table V. In Table VI, we provide
a comparison of our results with the reported results from
the Physionet 2009 challenge. As seen, models employing
neural networks (GRNN, RPS-NN) and kernel methods like
SVM are heavily dependent on several parameters, and can
have performances over wide ranges [9], [10], [11]. Most of
the other methods employed rules based on simple averaging
measures and still performed fairly [8], [45]. Moreover, hidden
markov models (HMM) for hypotension had reported a cross-
validation accuracy close to 97% [49], which compares well
with our cross-validation results too.

TABLE V
PHYSIONET 2009 AHE TEST PREDICTION CLASSIFICATION ACCURACIES

FOR EVENTS I AND II GIVEN G=3

Event I Event II
S=3 S=4 S=5 S=3 S=4 S=5

L=8 5/10 7/10 7/10 23/40 23/40 32/40
L=9 5/10 7/10 9/10 23/40 25/40 33/40
L=10 5/10 7/10 10/10 25/40 32/40 36/40
L=11 5/10 7/10 10/10 25/40 32/40 36/40

TABLE VI
A COMPARISON OF CLASSIFICATION METHODS EMPLOYED FOR THE AHE

PREDICTION PROBLEM. SEQUENTIAL PATTERNS REPORT COMPARABLE
ACCURACIES AGAINST EXISTING METHODS

Method Event I Event II
GRNN 10/10 37/40

5-min average of diastolic ABP 10/10 37/40
MAP averaging Rule 10/10 36/40

5-min average of ABP 10/10 36/40
Linear Regression 10/10 36/40
Median of MAP 10/10 34/40

NN with feature selection 9/10 32/40
SVM 10/10 30/40

RPS-NN 2/10 25/40
Sequential Contrast Patterns 10/10 36/40

B. Discussion

A comparison of our results with the reported results from
the Physionet 2009 challenge demonstrates our competitive
classification performances against those models employing
neural networks (GRNN, RPS-NN), kernel methods like SVM,
hidden markov models and various other statistical measures
[8],[9],[12]. Additionally, the effect of parameters like subse-
quence length (L), alphabet size (S) and maximum gap (G)
are shown in Figure 5. As seen, the best performances were
achieved using a maximum gap of 3, subsequence length
of 10 and an alphabet of cardinality 5. A general trend is
observed, where informative sequences could be extracted if
the maximum gap constraint is iteratively increased. This has
been demonstrated by Figure 5.

As seen, classification performances tend to improve with
an increase in gap sizes. At the same time, a very large

gap size G, also means that two consecutive symbols for a
sequential pattern have occurred over a wide range, where the
size was G. Extremely large gap sizes can impede a proper
interpretation of contiguous events in a sequence. Typically,
patient events occur over a time span, covering multiple days.
Thus, sequences may be clinically useful and unique, when
considered for shorter time windows in the original patient
timeline, with multiple days. For larger cohorts, finding out
an optimal gap is dependent on the resolution of the time
series (i.e. the sampling frequency). Typically, for detecting
differential blood pressure patterns, effective gap sizes can be
decided based on their ability to capture clinically meaningful
and informative episodes, spanning over shorter windows. In
addition, increasing S provides more number of discrete cut
points for MAP, and enables the algorithm to capture patterns
which characterize more fluctuations in the blood pressure.
Thus, for cases with S=5, the algorithm is able to find a
more expressive pattern, than for S=3. Hence, selecting an
alphabet size of 5 turned out to be an optimal choice, both
in terms of the discretization of blood pressure range as
well as keeping the algorithmic running costs within limits.
This also contributes to making improved predictions. Thus,
finding interesting sequences is highly dependent on the use
of various parameters like the number of symbols, length
of subsequence and gap sizes. Generally, the selection of
appropriate parameter values like L (pattern length), G (gap
size) and S (alphabet) tends to affect the cardinality of the set
of discovered patterns and the algorithmic running time. Thus,
extracting minimally expressive shorter sequences allows the
algorithm to restrict the running time as well as identify
patterns, which are clinically important and appear in longer
sequences.

In contrast to our method, the 5 minute averaging measures
are statistical features obtained from a 5 minutes window prior
to the immediate occurrence of an AHE. Thus, a major differ-
ence lies in the fact that our method considers a wider window
of 30 and 60 minutes, prior to the onset of AHE [8]. This
also indicates that a method, which is effective in performing
predictions using wider time windows may be more suitable
in a real time scenario, in comparison to statistical measures
obtained from a 5 minutes window (prior to AHE). In this
context, better results from the 5 minutes timespan prior to an
AHE, may be due to temporal proximity to the onset of an
AHE. For methods employing neural networks, both GRNN
and RPS-NN report 10/10, 2/10 (for Event 1) and 37/40, 25/40
(for Event II). These methods tend to be strongly dependent on
the tuning of parameter, as was also discussed by the authors
[9]. The contrast mining method, on the other hand, helps
to extract discretized sequential representations of the MAP
time series, which provide the maximum support towards the
occurrence of an AHE. These patterns are later useful, to not
only predict an AHE for an unknown record, but for further
clinical interpretation by domain experts. Our results indicate
that sequential contrast patterns are capable of extracting
informative symbolic episodes, which may be employed for
both AHE risk prediction and understanding of hemodynamic
behaviour towards effective analyses of sequential episodes,
that may be indicative of medical symptoms.
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TABLE III
SINGLE MODE CLASSIFICATION PERFORMANCE WITH 10 SYMBOLS

Gap Interval = 60 minutes Gap Interval = 120 minutes
ObWin = 0.5 h ObWin = 1 h ObWin = 0.5 h ObWin = 1 h

Sensitivity 100% 100% 100% 100%
Specificity 65.85% 68.29% 61.44% 62.19%
Accuracy 82.27% 83.54% 79.87% 80.37%

TABLE IV
MULTI MODE CLASSIFICATION PERFORMANCE WITH 15 SYMBOLS

Gap Interval = 60 minutes Gap Interval = 120 minutes
ObWin = 0.5 h ObWin = 1 h ObWin = 0.5 h ObWin = 1 h

Sensitivity 100% 100% 100% 100%
Specificity 81.19% 80.76% 79.36% 74.79%
Accuracy 81.30% 80.88% 79.48% 74.94%

Fig. 5. Effect of parameters L and G on the performance (A) For Event I, (B) For Event II

V. EXAMPLES AND CLINICAL SIGNIFICANCE OF
SEQUENTIAL CONTRAST PATTERNS

Acute hypotension is one of the most dangerous clinical
conditions that frequently occurs in an ICU and can cause se-
rious renal, cerebral and myocardial hypoxic damage. Existing
medical interventions are reactive (i.e after an AHE has been
triggered), for recommending treatment of underlying causes.
In contrast, early bedside detection of AHEs can enable the
development of life-saving interventions. Clinical interventions
to treat AHE attempt to restore the physiological status of the
body by targeting recommended BP values, increasing fluid
and salt intakes, administration of vasoactive agents and so on
[39], [40]. The AHE definition considered in the current study,
utilizes hypotension thresholds reported in previous studies
[15],[5]. Although ranges between 65-75 mmHg have also
been reportedly used for defining hypotension, definitions for
AHE time periods may also vary from 1 to 60 minutes, de-
pending on the objective of the study. However, drops in blood
pressure within smaller time spans (as indicated by monitoring
systems), may not always indicate an AHE. Such changes may
be due to monitoring errors or physiological changes caused
by normal human activity. Hence, a larger time window of
30 minutes is a suitable definition for capturing AHE related
information. Taking forward the suggested inclusion criteria

for an AHE, we additionally employed the widely used ICD-9
code of hypotension to extract clinical records from MIMIC-
II. The ICD-9 coding system describes a disease classification
scheme used to monitor population group health situations
for general epidemiological, health management purposes and
clinical usage. The extracted datasets were sourced from the
MIMIC-II repository, which tends to provide further credence
to the study.

A. Sequential pattern examples

Our sequential pattern mining algorithm can discover
simple-to-understand clinical symbolic subsequences. These
subsequences can be treated as evidence while diagnosing
for diseases. Even though methods such as neural networks
and SVM demonstrate competitive prediction performances,
they heavily dependent on non-linear kernel functions and
parameters. But, our sequential pattern mining methods ex-
tract signatures of clinical episodes in the form of symbolic
patterns.

In this study, we were able to mine a set of discretized
sequential patterns like ABAEDBBBCA, which were promi-
nent in acute hypotensive patients. Examples of representative
sequential blood pressure patterns for hypotension are as
reported in Table VII. For example, in the case of ABAEDBB-
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TABLE VII
REPRESENTATIVE EXAMPLES OF EXTRACTED AHE SEQUENTIAL

PATTERNS

..D..E..D..E..D..A..B..C..D..C..

..D..C..E..D..C..B..C..D..C..D..

..B..C..D..C..A..C..D..E..D..C..

..D..C..E..C..A..C..D..E..D..E..

..C..A..B..A..E..E..C..B..C..D..

..A..B..A..E..D..B..B..B..C..A..
..E..C..B..A..B..A..B..C..D..
..A..B..B..D..E..C..B..C..D..

BCA, the sequence indicates that the mean arterial pressure
follows the given pattern trajectory among a majority of AHE
patients. The given symbols indicate that the mean arterial
pressure time series region was divided into 5 equiprobable
regions (given by A, B, C, D, E) from 0 to 200 mmHg.
The example pattern illustrates that the blood pressure time
series followed a situation where majority of the AHE patients
record an episode of events represented by the MAP value
in a particular sequential order of blood pressure regimes
demonstrated symbolically as follows - A ≤ B ≤ A ≤ E ≤
D ≤ B ≤ B ≤ B ≤ B ≤ C ≤ A . Thus, each sequential
pattern describes a train of clinical events, represented by
the specific blood pressure regimes, categorised by discrete
symbols.

B. Pattern visualization and clinical interpretation

Interpretive sequential representations can be extremely
useful to clinicians for understanding the sequence of physio-
logical states that a patient passes through, before developing
a critical condition. Such interpretations can help establish
potential combinations of observable physiological sequences,
that precede AHE. Generally, the objective of clinical stud-
ies involves the estimation of causal relationships between
selected clinical variables and disease specific laboratory
test outcomes. Given temporal data for clinical variables,
sequential patterns of specific clinical variables can aid in
the interpretation of complex relationships between variables
and patient specific outcomes. Towards this objective, general
visual trends may be inferred from gap constrained sequences
as shown in Figure 6. Thus, sequential patterns can have
immense potential in the exploration of underlying clinical
relationships to facilitate personalized treatments. Accordingly,
similar studies have also claimed that the visual exploration
of sequential and temporal patterns in clinical patient data can
significantly aid in clinical decision making [53].

Moreover, mining of complex contrast sequences in hy-
potensive patient groups can aid in the development of inter-
esting clinical hypotheses such as the detection of a succession
of clinical events prior to the onset of AHEs. Thus, extracting
sequential contrast patterns can guide clinical decision-making
towards the effective investigation of hypotensive events. In
addition, the proposed methodology is flexible enough to also
accommodate clinician-defined constraints.

VI. CONCLUSION

The current study investigated the application of a novel
sequential contrast pattern mining methodology for predicting
acute hypotensive episodes in an ICU. Our study demonstrates
that research on the mining of informative sequential patterns
can be of significant clinical value to concerned stakeholder
in a clinical setting. In addition to demonstrating the clas-
sification performance, we also established the existence of
gap-constrained symbolic subsequences, which have strong
clinical interest to practitioners. Since the data encoded of a
patient’s journey is inherently temporal in nature, sequences
have the capability to uncover numerous hidden patterns,
which are otherwise not visible. As part of a knowledge
discovery process, the contrast pattern mining method extracts
patterns, which collectively help in the prediction of an AHE.
A real-time application of the reported strategy can help derive
significant sequential patterns of interest, which could be
translated into a complex sequence of clinical events. A higher
frequency of the occurrence of complex contrast sequences
while comparing hypotensive and normotensive patient groups
may be beneficial to a clinician to develop a clinical hy-
pothesis relating to a succession of clinical events leading
to an AHE. Extracting sequential patterns from hypotensive
patient groups can inform medical decision-making towards
the diagnosis and investigation of AHEs. Thus, significant
patterns are a potential source for launching further data driven
investigations validated by randomized clinical trials. Such
patterns can also be employed in conjunction with multiple
types of clinical features for the construction of accurate AHE
prediction systems. In summary, the sequential contrast pattern
mining approach described in this work well relates to the
expectations of evidence-based medicine.
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