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Routinely recorded electrocardiograms (ECGs) are often corrupted by different types
of artefacts and many efforts have been made to enhance their quality by reducing the
noise or artefacts. This paper addresses the problem of removing noise and artefacts
from ECGs using Independent Component Analysis (ICA). An ICA algorithm is
tested on 3−channel ECG recordings taken from human subjects, mostly in the
Coronary Care Unit (CCU). Results are presented that show that ICA can detect and
remove a variety of noise and artefact sources in these ECGs. One difficulty with the
application of ICA is the determination of the order of the independent components.
A new technique based on simple statistical parameters is proposed to solve this
problem in this application. The developed technique is successfully applied to the
ECG data and offers potential for online processing of ECG using ICA.
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1. Introduction

In routinely recorded ECGs, many types of noise and artefact are present. Noise is
defined to be part of the real signal that confuses analysis (e.g. muscle movements)
and artefact is defined to be any distortion of the signal caused by the recording
process, such as electrode movement. Many attempts have been made to detect and
eliminate noise sources and artefacts from the actual electrocardiographic signals. 

Analogue or digital filters are widely used to reduce the influence of interference
superimposed on the ECG. Early work on noise and artefact reduction in the ECG
used either temporal or spatial averaging techniques [1]. The temporal averaging
method requires a large number of time frames for effective noise reduction, while
the main drawback of spatial averaging is the physical limitation of placing a large
number of electrodes in the same region. Besides linear noise filtering, several
adaptive filtering methods have been proposed for separation and identification of the
component waves from noisy ECGs [2, 3, 4]. The quasi periodic pattern of the
cardiac signal has also been exploited [5, 6, 7] by synchronizing the parameters of the
filter with the period of the signal. Other proposed methods include subspace
rotations [8], neural networks [9], and bi−spectral analysis [10]. 

However, many of these methods to filter out the noise and artefacts from ECG are
only partially successful. On the one hand, the filters often lead to a reduction in the
amplitudes of the component waves, the Q−, R− and S− waves or the QRS complex
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[Fig. 1]. On the other hand, some of the noise and artefacts are random in nature and
have a wide range of frequency content. Hence the filters fail to remove the
interference when it is within the same frequency range as the cardiac signal.

Fig.1. Typical ECG waveform  with the P, Q, R, S and T waves for one heart beat.

ICA is a newly developed source separation method, and its application to
biomedical signals is rapidly expanding [11]. In the field of ECG analysis, Cardoso
[12] presented a good example of ICA decomposition for fetal and maternal ECGs
recorded simultaneously from 8 electrodes placed on the mother’s chest and
abdomen. Wisbeck et al. [13] used ICA to isolate the breathing artefacts (large
baseline shifts due to the physical movement of the electrodes in relation to the heart)
from 8−channel ECG recordings. This showed that the ICA technique was able to
enhance the quality of the cardiac signals. However, the breathing artefacts were
found in several independent components. Barros et al. [14] proposed a two−layer
neural network application of ICA to eliminate artefacts from the ECG. In this case,
only simulations were carried out to demonstrate the performance of the algorithm. In
a recent study, Tong and his colleagues [15] also attempted to remove ECG
interference from EEG recordings in small animals using ICA. 

Although a comprehensive study on the application of ICA to EEG noise and artefact
removal has been carried out by Jung et al. [16], there is still no general approach to
ECG noise and artefact removal using ICA. Secondly, it is usually the case that only a
few electrodes are used in the clinical environment for the continuous recording of
the ECG (12−lead ECGs are in general only recorded for short periods of time,
usually a few seconds, when a detailed investigation of the heart condition is required,
for example during a drug trial or following a heart attack). Thirdly, there is no
ordering of the ICA components (the ICA permutation problem) as with Principal
Component Analysis (PCA) [17]. Thus one has to rely on visual inspection for further
processing, which is not desirable in routine clinical ECG analysis. 

The purpose of this paper is thus threefold. Firstly, it aims to see if ICA can remove
noise and artefacts where simple filters fail to do so. The focus is not on a particular
type of noise or artefact, hence a more general analysis than previously attempted is
described. Secondly, ICA is applied to 3−channel human ECGs recorded from
hospital patients in CCU to investigate how ICA performs with a limited number of
observations. Thirdly, a technique based on linear statistics is proposed to solve the
ICA permutation problem in this application.
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The paper begins by describing briefly the ICA model in section 2.1.1 and the
algorithm used in section 2.1.2. The technique to solve ICA permutation is proposed
in section 2.2. The type of data to be analysed is described in section 2.3. The choice
of thresholds for detection of continuous noise and abrupt changes is considered in
section 3. Results are then presented in sections 4 together with a discussion and
pointers to future work in the last section. 

2. Materials and methods 

2.1 Independent  component analysis

2.1.1 The basic model

The basic ICA approach uses the following linear model:

X=AS                                                                                                     (1)

where the vector S represents m independent sources, the matrix A represents the
linear mixing of the sources, and the vector X is composed of m observed signals.
Note that no noise term is included in this model, since the estimation of the noise−
free model is difficult enough in itself. 

A source here means an original signal, i.e. an independent component, like a speaker
in the ‘cocktail party problem’[17]. Broadly speaking, the idea of ICA is to recover
the original sources by assuming that they are statistically independent. The
independence assumption means that the joint probability density function (pdf) is the
product of the densities for all sources:

P S =∏ p s
i

 (2)

where p s
i is the pdf of source i and P S is the joint density function. 

Denoting the output vector by V, the aim of ICA algorithms is to find a matrix U
to undo the mixing effect. That is, the output will be given by

V=UX                                                                                                     (3)

where V is an estimate of the sources. The sources can be exactly recovered if U
is the inverse of A up to a permutation and scale change.

2.1.2 The  algorithms

The estimation of the data model of ICA is usually performed by formulating an
objective function, e.g. mutual information or negentropy, and then minimizing or
sometimes maximizing it. This transforms the ICA problem to a numerical
optimization problem [17]. 

In this approach, we use the JADE (Joint Approximate Diagonalization of Eigen−
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matrices) algorithm developed by Cardoso [18]. The JADE algorithm, which is based
on the joint diagonalization of cumulant matrices, has been successfully applied to the
processing of real data sets, such as mobile telephone, radar as well as biomedical
signals. It is very efficient for separation when there is a small number of
observations. Hence, this algorithm is suitable for our approach.

The JADE algorithm can be summarized as follows:

1) Initialization. Estimate whitening W and set Z=WX .

The covariance matrix is defined as R
x
=E XX T , where E is the

mathematical expectation function. Denoting D as the diagonal matrix of its
eigenvalues and H as the corresponding eigenvectors, a whitening matrix is 

W=HD �1⁄2 HT                                                        (4)

2) Form statistics. Estimate a maximal set { Q
Z } of the cumulant matrix.

Given a n×1  random vector z and any n×n matrix M , the cumulant
matrix is 

Q
Z

M =E { zT Mz zzT }�R
z
tr MR

z
�R

z
M

z
�R

z
M T R

z
,      (5)

where tr denotes the trace of a matrix.

3) Optimize orthogonal contrast. Find the rotation matrix U such that the
    cumulant matrix is as diagonal as possible. See [18] for details.

4) Separate. Estimate A as V=U W �1 and the source as V=U�1 X .

In our problem, the rows of the input matrix X are the three ECG signals. The
reconstructed ECG can be derived from X’=U V’ , where V’ is the matrix of
derived independent components with the row representing the noise or artefacts set
to zero. Suppose the second ICA component represents noise. V’ can then be
written as

V=
V

11
V

12
� V

1N

0 0 � 0
V

31
V

32
� V

3N

 (6)

where V
ij

i, j=1,...,N are the elements of matrix V , and N represents sample
number.

All studies reported in this paper were carried out using the JADE algorithm
implemented in MATLAB 5 (See http://tsi.enst.fr/icacentral/algos.html).
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2.2 Identification of noise and artefact component

From the ICA model in Eq. (1), it can be seen that one cannot determine the order of
the independent components, as a permutation matrix P and its inverse P�1 can

be added in the model to give X=AP�1 PS. The elements of PS are the original
independent variables, but in a different order. The matrix AP�1 is therefore a new
unknown mixing matrix, to be solved by the ICA algorithms. Furthermore, the order
of components may also vary from one data segment to the next. 

Therefore one has to rely on visual inspection of the ICA components for further
processing, a requirement which is not desirable in routine clinical ECG monitoring.
In practice, the separated components tend to have more distinctive properties than
the original signals both in time and frequency domains. Hence we may employ the
statistical properties of these waveforms and recognize them automatically. 

2.2.1 ECG, continuous noise and abrupt changes

Fig. 2.  Typical waveforms of (a) the ECG, (b)abrupt changes and (c) continuous noise

According to their morphology in the time domain, the ICA components of ECG
recordings can be roughly divided into three categories: normal ECG, continuous
noise and abrupt change. As an illustration, consider the waveforms in Fig. 2.

The data has a length of 10 seconds. It can be seen that each has visually distinct
characteristics. It is therefore likely that there exist proper indices to distinguish the
continuous noise and abrupt changes  from normal ECGs.

The identifying procedure will be composed of two main steps: identifying noise
using kurtosis and detecting abrupt changes using variance.  
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2.2.2 Kurtosis

The kurtosis is  the fourth−order cumulant. For a signal x, it is classically defined as 

Kurt x =E x4 �3 E x2 2                                                                     (7)

The kurtosis is zero for Gaussian densities. For continuous noise as shown in Fig 2(c),
the Kurtosis value is much smaller compared with that of normal ECG (Fig. 2(a)). In
our approach, a threshold is chosen from analysis of sample waveforms, and a
component whose modulus of kurtosis is below this threshold will be considered as
continuous noise.

The main reason for choosing kurtosis is its simplicity. Computationally, kurtosis can
be estimated by using the fourth moment of the sample data. However, kurtosis also
has some drawbacks in practice. The main problem is that kurtosis can be very
sensitive to outliers [19] or abrupt changes. Its value may depend on only a few
observations in the tails of the distribution, which may be erroneous or irrelevant
observations. Abrupt changes cannot be differentiated from normal ECG by using
kurtosis, hence another index is needed for this task. 

2.2.3 Variance index

For a signal x n with N samples, the variance is known as: 

Var
x
=∑

n=1

N�1

x n �x n 2 (8)

where x n is the mean value of x n . 

The problem is that one cannot determine the variances (energies) of the independent
components. In Eq. (1), since both A and S are unknown, any scalar multiplier in
one of the sources could always be cancelled by dividing the corresponding column
of the mixing matrix A by the same scalar. Therefore, ICA algorithms usually
assume that each component has unit variance. The matrix A is then adapted in the
ICA solution methods to take this restriction into account. 

The abrupt changes are usually short transients, as is shown in Fig. 2(b). There are
several ways which could be used to detect these changes. Most simply, the relevant
component can be divided into a number of segments, whose variance or energy are
similar except for the segments containing abrupt changes. For example, the
components in Fig.2 can be divided into 10 blocks. For ECG or continuous noise, the
variance difference between each of these segments is negligible. However, it is
comparatively larger for the component containing the abrupt changes, and this can
be used to identify that component.

In our approach, a 10−second epoch of ECG is firstly chosen for ICA processing.
Next, the Kurtosis value of each ICA component is calculated. A component whose
modulus of Kurtosis is below the threshold is marked as continuous noise. Then, the
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remaining ICA components are divided into 10 non−overlapping blocks, each of one−
second duration. The variances of the 10 segments for each component are calculated
as shown in Eq. (8), then the variance of these ten variance values is obtained as the
parameter Var

var . The component whose Var
var value is above a pre−determined

threshold is marked as an abrupt change component. Finally, the corrected ECG can
be obtained using equations (3) and (6).

2.3 Materials

Fig.3.  Standard electrode points for clinical ECG monitoring.

The data analysed were collected from patients at the John Radcliffe Hospital in
Oxford using a multi−parameter patient monitoring system [20]. The patients were
drawn from a variety of wards (but principally from the Coronary Care Unit) and had
different medical conditions. The cardiac signals were measured using a set of
electrodes conforming to the standard ECG electrode placement points (Fig.3). Only
three electrodes are used, one at V5, one at RA (Right Arm) and one at LL (Left
Leg). They correspond to two different clinical channels, V5 and lead II, as well as a
third channel with no specifically defined meaning [21]. In order to keep the number
of electrodes on the patient to a minimum, there is no reference electrode and so the
ground is taken to be the average of the three different channels. 

The ECG is sampled at 256Hz, in line with the 1994 ANSI standards [22]. An FIR
band−pass filter (Table 1) is designed using the Parks−McClellan algorithm [23, 24].
Filters designed by this method exhibit an equi−ripple behaviour in their frequency
response, and have a linear phase response over the range of interest, so that the shape
of the ECG waveform is not distorted. 

The data were not pre−selected with respect to quality, and recordings lasting over
several hours from 10 patients were used  for the analysis described in this paper.
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Table 1. Filter Properties used for coefficient generation with Matlab 5
Filter Type f1 (Hz) f2 (Hz) Rs (dB) Rp (dB) fs (Hz) Order
High Pass 0.00128 1.28 48 2.096 256 312
Low Pass 35 45 48.25 1.925 256 37

In Table 1, Rs is the minimum attenuation in the stop band. The transition band lies
between frequencies f1 and f2. Rp is the ripple in the pass band, fs is the sampling
frequency and the order is the number of coefficients required to meet the attenuation
criterion.

3. Choice of thresholds for detection of continuous noise and
abrupt changes

Three−channel ECG recordings from 10 patients were used in this study. For the
identification approach, the 10 data sets were divided into two groups, six of them
being used to determine the thresholds needed with the other 4 set aside for
evaluating the performance of the proposed technique. 

100 blocks of ECG data, each with a period of 10 seconds, were extracted from the
first six data sets. The data were processed using the ICA algorithm described above,
then the Kurt and Var

var values were calculated in each case. From the analysis

of the results, the thresholds were set to 5 for the value of Kurt , and 0.5 for the

value of Var
var , i.e. a component for which the modulus of Kurt is less than 5

will be considered to be continuous noise and a component whose Var
var value is

greater than 0.5 will be marked as corresponding to an abrupt change.

A further 60 blocks of ECG data, each with a period of 10 seconds, were extracted
from the remaining 4 validation data sets. This showed that all the noise and abrupt
changes were correctly identified using the chosen thresholds.
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4. Results

Example 1: Noise in one channel (subject 2, time period: 80s−90s)

Fig. 4. Demonstration of ECG artefact removal by ICA (a) 10s of ECG data, with channel 1
contaminated with noise. (b) Corresponding ICA components. (c) Corrected ECG signals by
removing the third component in (b).

Table 2. The Values of |Kurt| and Varvar for each of the 3 ICA components
Index ICA1 ICA2 ICA3

|Kurt| 24.09 6.97 2.84

Varvar 0.17 0.2 0.42

Fig. 4(a) shows a 10s portion of ECG data. It can be clearly seen that channel 1 is
contaminated with noise, seen as abnormal oscillations either side of the 5th, 7th and 8th

QRS complexes. Fig. 4(b) shows the corresponding components derived by ICA. The
noise in the original ECG is separated as ICA component 3, whose Kurt value is
2.84 (Table. 2). Fig. 4(c) shows the ‘corrected’ ECG when the noise component is
removed by setting the third row of the V matrix to zero (c.f. Eq. (6)). 

In this case, the noise source can be effectively identified and removed from the
original signal.
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Example 2: Noise in two channels (subject 1, time period: 1200s−1210s)

Fig. 5. Demonstration of ECG artefact removal by ICA (a) 10s of EEG data, with channels 1 and 2
contaminated with noise. (b) Corresponding ICA components. (c) Corrected ECG signals by
removing the third component in (b).

Table 3. The Values of |Kurt| and Varvar for each of the 3 ICA components

Index ICA1 ICA2 ICA3

|Kurt| 12.89 13.37 1.61

Varvar 0.1 0.12 0.2

Fig. 5(a) shows a 10s portion of ECG data. It can be clearly seen that both channel 1
and channel 2 are contaminated with noise. Fig. 5(b) shows the corresponding
components derived by ICA. The noise in the original ECG is separated as ICA
component 3, whose Kurt value is 1.61 (Table 3). Fig. 5(c) shows the ‘corrected’
ECG by removing the noise component of ICA, again the third component in Fig.
5(b). 

In this case, the noise source is also clearly identifiable and it can be removed from
the original signal. Note also that the third QRS complex is of abnormal shape and
timing. This is possibly an ectopic beat [25], not identified as artefact or noise by the
ICA algorithm, and is consequently not removed.
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Example 3: Artefacts in one channel (subject 3, time period: 240s−250s)

Fig. 6. Demonstration of ECG artefact removal by ICA (a) 10s of ECG data, with artefacts in
channel 2 (2−3s and 7−8s). (b) Corresponding ICA components. (c) Corrected ECG signals by
removing the third component in (b).

Table 4. The Values of |Kurt| and Varvar for each of the 3 ICA components

Index ICA1 ICA2 ICA3

|Kurt| 20 115.24 56.33

Varvar 0.35 0.25 2.44

Fig. 6(a) shows a 10s portion of ECG data. It can be seen that there are two artefacts
in channel 2, during the periods from 2 to 3s, 3 to 4s and 7 to 8s. Fig. 6(b) shows the
corresponding components derived by ICA. The artefacts in the original ECG are
again isolated to ICA component 3 with the Var

var value being 2.44 (Table 4). Fig.
6(c) shows the ‘corrected’ ECG by removing the artefact component of ICA, setting
it to zero as before. 

Although the artefacts occur at the same time as the QRS complexes in this case, they
can still be removed from the relevant QRS complexes. Furthermore, the second
artefact (within the period 3−4s) is obvious in ICA component 3, though it could
easily have been ignored in the original signals.
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Example 4: Noise plus artefact in two channels (subject 1, time period:1010s−
1020s)

Fig. 7. Demonstration of ECG artefact removal by ICA (a) 10s of ECG data, with artefacts in
channels 2 and 3 (4−6s), noise in channels 1&2. (b) Corresponding ICA components. (c) Corrected
ECG signals by removing the third component in (b).

Table 5. The Values of |Kurt| and Varvar for each of the 3 ICA components
Index ICA1 ICA2 ICA3

|Kurt| 16.54 14.97 8.95

Varvar 0.25 0.21 1.22

Fig. 7(a) shows a 10s portion of ECG data. It can be clearly seen that there are
artefacts in channels 2 and 3, within the period from 4 to 6s (note also the distorted
QRS complexes caused by the artefacts) and noise in channels 1 and 2. Fig. 7(b)
shows the corresponding components derived by ICA. As before the artefacts and
noise in the original ECG are isolated to ICA component 3, the Var

var value being
1.22 (Table 5). Fig. 7(c) shows the ‘corrected’ ECG by removing the artefacts and
noise component of ICA. 

In this case, when the artefacts and ectopic beats are coincident, the former can be
effectively detected and removed from the original signal.
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Example 5: Artefacts in 3 channels (Subject 1, time period: 840−850)

Fig. 8. Demonstration of ECG artefact removal by ICA (a) 10s of ECG data, with artefacts in all 3
channels (7s−8s), (b) Corresponding ICA components. (c) Corrected ECG signals by removing the
third component in (b).

Table 6. The Values of |Kurt| and Varvar for each of the 3 ICA components
Index ICA1 ICA2 ICA3

|Kurt| 14.71 14.44 104.74

Varvar 0.11 0.06 8.01

Fig. 8(a) shows a 10s portion of ECG data. It can be clearly seen that there is an
artefact just after 7s which affects all 3 channels. Fig. 8(b) shows the corresponding
components derived by ICA. The artefacts are also isolated to ICA component 3, the

Var
var value being 8.01 (Table 6). Fig. 8(c) shows the ‘corrected’ ECG by

removing the artefacts component of ICA. 

In the case of an artefact affecting all 3 channels at the same time, it can be
effectively detected and removed from the original signal.
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Example 6: Noise in 3 channels (subject 2, time period: 900s−910s)

Fig. 9. Demonstration of ECG artefact removal by ICA (a) 10s of EEG data, with noise in all the 3
channels. (b) Corresponding ICA components. (c) Corrected ECG signals by removing the third
component in (b).

Table 7. The Values of |Kurt| and Varvar for each of the 3 ICA components

Index ICA1 ICA2 ICA3

|Kurt| 25.92 0.17 12.81

Varvar 0.26 0.24 0.22

Fig. 9(a) shows a 10s portion of ECG data. It can be clearly seen that there is some
high−frequency noise in all 3 channels, lasting the whole segment. Fig. 9(b) shows
the corresponding components derived by ICA. The high−frequency noise is mostly
isolated to ICA component 2, the Kurt value being 0.17 (Table 7). Fig. 9(c) shows
the ‘corrected’ ECG by removing this artefactual component of ICA. 

In this case, the high−frequency noise which is present in all 3 channels and lasts for
the whole segment, can be effectively detected and substantially removed from the
original signal.
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Example 7: Noise and artefacts in 3 channels (subject 10, time period: 359s−
369s)

Fig. 10. Demonstration of ECG artefact removal by ICA (a) 10s of ECG data, with noise and
artefacts in all 3 channels (0s−2s), (b) Corresponding ICA components. (c) Corrected ECG signals
by removing the second and third components in (b).

Table 8. The Values of |Kurt| and Varvar for each of the 3 ICA components

Index ICA1 ICA2 ICA3

|Kurt| 9.52 8.46 0.32

Varvar 0.14 2.94 0.02

Fig. 10(a) shows a 10s portion of ECG data. It can be clearly seen that there is some
kind of artefact and noise in all 3 channels around the period from 0 to 2s. Fig. 10(b)
shows the corresponding components derived by ICA. It is also clear that the second
component contain transient artefacts ( Var

var =2.94, Table 8) and that the third

component corresponds to high frequency noise ( Kurt =0.32, Table 8). Fig. 10(c)
shows the ‘corrected’ ECG by removing components 2 and 3 of ICA as shown in Fig.
10(b). 

In this case, the artefacts and continuous noise which are present in all 3 channels can
be  separated into 2 different channels and removed. 
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Example 8: Artefacts and Noise in 3 channels (subject 1, time period: 1210s−
1220s)

Fig. 11. Demonstration of ECG artefact removal by ICA (a) 10s of ECG data, with artefacts and
noise in all the 3 channels. (b) Corresponding ICA components. (c) Corrected ECG signals by
removing the third component in (b).

Table 9. The Values of |Kurt| and Varvar for each of the 3 ICA components

Index ICA1 ICA2 ICA3

|Kurt| 12.3 12.02 6.53

Varvar 0.27 0.3 1.88

Fig. 11(a) shows a 10s portion of ECG data. It can be clearly seen that there are
artefacts and noise in all 3 channels. Fig. 11(b) shows the corresponding components
derived by ICA. It is obvious that all three ICA components contain some noise and
artefacts, although component 3 is the one identified as artefact ( Var

var =1.88,
Table 9). Fig. 10(c) shows the ‘corrected’ ECG by removing artefact component 3 of
ICA as shown in Fig. 11(b). Nevertheless, there still exists a lot of noise in the
corrected ECG, which also includes most of the artefactual data. Therefore, ICA is
not successful in removing noise or artefacts in this case.

Compared with examples 6 and 7, it seems that the artefacts are of higher amplitude
leading to a low signal−to−noise ratio, which is probably the main reason why ICA
fails here.

16



4. Discussion and conclusion

ICA is successful in separating artefacts and noise from the ECG using the approach
detailed in this report. ICA can effectively detect and remove a considerable amount
of the noise and artefacts, particularly when only one or two channels of ECGs are
corrupted. This suggests that artefacts and noise are independent sources from the
physiological sources generating the cardiac signals. 

A limitation of ICA is that one has to rely on visual inspection of the ICA
components for further processing. We have introduced a new approach to solving the
above problem for the case of clinical ECG analysis. The proposed technique is based
on simple statistical indices and it has been successfully tested on real ECG data. The
advantage of this method is its simplicity, efficiency, and hence potential for online
processing of the ECG using ICA. 

ICA makes no assumption regarding the model that best describes the data. This can
be viewed as advantageous, as it makes ICA general in its application. However it is
also a weakness in some instances, for it does not allow inclusion of prior information
concerning the signal being analysed. The ECG is a quasi periodic signal which has a
distinct morphology. It should be possible to combine this prior information with
current ICA algorithms and improve the rejection of artefacts from heavily corrupted
signals such as those of Fig. 11. 
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