
Formatting and Searching a Massive,

Multi-parameter Clinical Information Database

by

Tin Htet Kyaw

S.B., MIT, Electrical Engineering and Computer Science (2004)

and

S.B., MIT, Management Science (2005)

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 18, 2005

Certified by. .
Professor Roger G. Mark

Distinguished Professor in Health Sciences and Technology
Professor of Electrical Engineering

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Formatting and Searching a Massive, Multi-parameter

Clinical Information Database

by

Tin Htet Kyaw

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 2005, in partial fulfillment of the

requirements for the degrees of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Formatting data and executing time-oriented queries on a massive, multi-parameter
clinical information database poses significant computational challenges. The chal-
lenges encountered in converting high-resolution waveform and trend signals in the
MIMIC II (Multi-parameter Intelligent Monitoring for Intensive Care II) database
from an error-prone proprietary format to a stable open-source WFDB (Waveform
Database) format is presented in the first half of this thesis. The design and imple-
mentation of a search engine that is capable of executing time-series queries on clinical
information in the MIMIC II database such as lab results, medications, and nurse-
verified values from bedside monitors is presented in the second half of this thesis.
The search engine employs simple algorithms with little storage overhead to identify
time periods in patient records that satisfy time series criteria based on thresholds
and gradients of unevenly-sampled measurements. Results from queries executed on
the search engine to detect physiological events of clinical interest were presented.
Case studies on patient records returned as hits for queries were performed to review
the strengths and limitations of the search engine.

Thesis Supervisor: Professor Roger G. Mark
Title: Distinguished Professor in Health Sciences and Technology
Professor of Electrical Engineering

3

4

Acknowledgments

I have received help from many people over the past one and a half year to complete

this project. Without all their help and support, this project would not have been

possible.

First of all, I would like to thank Professor Roger Mark for his wonderful guidance

and support for my research at the Laboratory of Computational Physiology. I am

extremely fortunate to have been guided by his insight in research and engineering

throughout the course of this project.

I would like to thank Mohammed Saeed for all the help and thoughtful insight he

contributed to this project. Mohammed’s knowledge about the MIMIC II data was

vital in the successful conversion of the data from Philips format to WFDB format.

I also thank Mohammed for extracting the clinical information needed for the search

engine from the relational database and putting them into MATLAB compatible

format.

I would also like to thank Dr. Gari Clifford for all his help and support throughout

this project. I received help from Gari at virtually every stage of this project. His

keen insight helped me develop new perspectives in my research.

Special thanks to George and Benjamin Moody for for their help with the WFDB

library. I am in awe at George’s skill and experience in software engineering and

biomedical signal processing. A big thank you to Benjamin for teaching me gdb and

helping me find the worst software bug in my life thus far.

I would like to thank Dr. Thomas Heldt for his constant ‘Thesis’ reminder and

also his help in editing this thesis.

I also thank Dr. Brian Janz for his help and contribution to the search engine.

I thank Andrew Hung for developing an excellent web interface for the MIMIC II

search engine. It was a lot of fun working with him and I wish him the best of luck

in his college application and everything else.

I thank James Sun, Laurence Zapanta, Zaid Samar, Omar Abdala, Jennifer Shu,

Margaret Douglass, Carlos Renjifo, and Tushar Parlikar for their friendship and sup-

5

port. Working at LCP was a fun and enjoyable experience also because of their

companionship. Special thanks to James for our partnership through 6.021, 6.022

and the MATLAB expertise he shared with me. Also, I thank Carlos for ‘the other

version’ of my thesis.

Last but not least, I would like to thank my family, especially my parents, U Aung

Tun and Daw Khin Myint Win, for their kind love, guidance and support. They have

always been my source of inspiration and all my achievements today would not have

been possible without their love and guidance.

This research work was supported by Grant R01 EB001659 from the National

Institute of Biomedical Imaging and Bioengineering.

6

Contents

1 Introduction 15

1.1 Background and Motivation . 15

1.1.1 Challenges and Issues in the ICU 15

1.1.2 Advanced Patient Monitoring System (AMS) and MIMIC II . 17

1.2 Thesis Goals and Outline . 18

2 Data Conversion: from Proprietary to Open Source 21

2.1 Overview . 21

2.2 Data Collection . 22

2.3 Source Data Schema . 24

2.3.1 Trend Schema . 24

2.3.2 Wave Schema . 25

2.4 Target Data Schema . 32

2.4.1 WFDB Overview . 32

2.5 Data Conversion . 33

2.5.1 Trend Conversion . 34

2.5.2 Wave Conversion . 37

2.6 Data Conversion Results and Data Verification 41

2.6.1 Data Conversion Results . 41

2.6.2 Data Verification . 41

2.7 Continued Challenges . 42

2.7.1 Segmentation of a Wave File into multiple WFDB records . . 42

2.7.2 Identical Cases in Different Date Directories 43

7

2.7.3 Mappings from Cases to Patients 45

2.7.4 Unknown Leads in Wave Files 46

2.8 Suggested Improvements . 46

3 Search Engine for a Massive, Multi-parameter Clinical Information

Database 49

3.1 Overview and Motivation . 49

3.2 Existing Technologies for Indexing and Searching Time Series Data . 51

3.3 Design Objectives . 52

3.4 Data Structure Design . 53

3.4.1 Clinical Information Structures 53

3.4.2 Supplementary Data Structures 56

3.4.3 Input/Output Data Structures 60

3.5 Algorithm Design . 64

3.5.1 Query Parsing Algorithm . 67

3.5.2 Data Screening Algorithms . 70

3.5.3 Time Series Search Algorithms 72

3.6 Interface Design . 80

3.6.1 Design Objectives . 80

3.6.2 Implementation . 81

3.6.3 Strengths and Limitations . 89

3.7 Performance, Case Studies and Discussion 90

3.7.1 Performance Tests and Results Summary 91

3.7.2 Case Studies and Discussion 93

4 Conclusions and Suggested Future Work 101

4.1 Summary . 101

4.2 Suggested Future Work . 102

A Full list of content in columnMappings 105

8

B Deidentified Discharge Summaries of Selected Patient Records 109

B.1 Discharge Summary for Case Study 1 109

B.2 Discharge Summary for Case Study 2 111

B.3 Discharge Summary for Case Study 3 115

9

10

List of Figures

2-1 MIMIC II data collection process. 23

2-2 Snapshot of the first 3 minutes of a sample waveform file. 27

2-3 Data schema of a WaveformRecord structure. 29

2-4 Data flow chart for trend conversion. 35

2-5 Graphical illustration of the algorithm to determine sequence in which

rows of a trend file are written into a target WFDB file. 36

2-6 Data flow chart for wave conversion. 40

2-7 Segmentation of a single proprietary wave file into multiple WFDB

records during Wave-WFDB conversion. 43

2-8 MIMIC II time series data organization. 44

3-1 Example showing how 6 value types stored in pidGradientStat are de-

rived. 59

3-2 Bounds on the rate of change of X for a gradient search criterion: ‘X

∆Xmin ∆Xmax ∆Tmin ∆Tmax 0’. 63

3-3 Flow chart for the MIMIC II search engine. 65

3-4 Graphical illustration of query parsing. 67

3-5 Flow chart of the query parsing algorithm. 69

3-6 Steps of a time series search on a single patient record. 72

3-7 Example of a threshold search with Xmin = 90bpm. 73

3-8 Graphical Illustration of how a boolean time line is constructed from

Ihits
ij . 79

11

3-9 Graphical Illustration of how a boolean time line is converted into

Ton, Toff representation. 80

3-10 Flow chart of the web-based interface for the MIMIC II search engine. 82

3-11 Step 1 of the web-based interface for the MIMIC II search engine. . . 83

3-12 Step 2 of the web-based interface for the MIMIC II search engine. . . 84

3-13 Step 3 of the web-based interface for the MIMIC II search engine. . . 85

3-14 Screen shot of a trend plot generated for a patient record returned as

a hit by the MIMIC II search engine. 86

3-15 A sample annotation generated from a hit returned by the MIMIC II

search engine. 87

3-16 Screen shot of the content of a directory where the search engine gen-

erated annotations are saved. 88

3-17 pH, paCO2 and Lactate Trend Plots for Case Study 1. 94

3-18 Relevant Trend Plots for Case Study 1 from the Annotation Station. 95

3-19 Creatinine Trend Plot for Case Study 2. 96

3-20 Relevant Trend Plots for Case Study 2 from the Annotation Station. 97

3-21 Creatinine, ALT and AST Trend Plot for Case Study 3. 98

3-22 Relevant Trend Plots for Case Study 3 from the Annotation Station. 99

12

List of Tables

2.1 Data schema of a trend file. 24

2.2 Data Schema of a time stamp. Each attribute is a 16-bit unsigned

short integer . 25

2.3 Data types of available in a trend file. 26

2.4 Data schema of a WaveSupportStruct. 30

2.5 Known mappings from leadType to actual lead types in an ICU monitor 31

2.6 Gains and Units of Physiological Signals in a Trend File 38

2.7 Summary of Data Conversion Results 41

3.1 Schema of the demographics matrix. 54

3.2 Schema of the pidCarevue matrix . 55

3.3 Schema of the pidTimeLine matrix 56

3.4 Schema of the pidIndices matrix . 57

3.5 Schema of the pidSampleCount matrix 58

3.6 Description of values stored in each of the six 2-dimensional matrices

in pidGradientStat. 59

3.7 Data schema of a search hit structure. 66

3.8 Heart rate samples X and the corresponding time stamps T of an

example patient record P. 75

3.9 Summary of tests conducted to evaluate the performance of the search

engine on the MIMIC II database. 92

3.10 Summary of Results for tests in Table 3.9. 93

A.1 Content of columnMappings array. 105

13

B.1 Discharge Summary for Case Study 1. 109

B.2 Discharge Summary for Case Study 2. 111

B.3 Discharge Summary for Case Study 3. 115

14

Chapter 1

Introduction

1.1 Background and Motivation

Today, medicare for patients with critical health conditions is provided in a in an spe-

cialized unit in a hospital known as the Intensive Care Unit (ICU). Patients who are

admitted to an ICU are among the most critically ill in a hospital with life-threatening

medical conditions that require constant monitoring and timely interventions in the

event of deterioration. With the patient’s life at stake, it is of utmost importance for

the clinicians in the ICU to have simple, efficient ways of accessing and processing a

patient’s physiological data to make informed decisions regarding the patient’s state

and provide appropriate treatments.

1.1.1 Challenges and Issues in the ICU

Advances in computer and information technology coupled with the growth of sensor

technology and computer networks have greatly increased the variety and complexity

of medical devices available in a modern ICU. An ICU today is typically equipped

with a number of bedside monitors that continuously record a series of waveform

data such as the electrocardiogram (ECG), and blood pressure waveforms. Besides

recording the waveform data, the monitors also record trends of the waveform data

and generate alarms when the waveform data or the trend data fall out of acceptable

15

ranges. In addition to the data generated by the bed-side monitors, clinicians also

have access to clinical information systems with data from mechanical ventilators,

laboratory tests, imaging studies and the notes compiled by other clinicians on the

same patient.

Clinicians working in an ICU today are confronted with an overload in clinical

information resulting from poor data organization and a poor interface to access data

generated from a myriad of devices. It is customary to record time series data such

as ECG signals at 256 Hz in today’s ICU bedside monitors. Given that each monitor

can record numerous time series signals (up to 4) and an ICU clinician on a 8-hour

shift may need to process over 50 megabytes of data from the bedside monitor for

a single patient. Since an ICU clinician may be responsible for more than 1 patient

at the same time, the sheer volume of data generated by the monitors alone can be

overwhelming for a person to keep track of and analyze in detail. The equipment

in an ICU is typically composed of devices manufactured by companies with varying

design goals. Hence, computer systems in an ICU built on top of a heterogeneous

mixture of devices often result in systems with poor data integrity, organization and

interface [1].

Information overload, coupled with poor data organization and integration, leads

to deficiencies in patient care in an ICU. The continuous time series data from the

bedside monitors are often poorly integrated with the related clinical information from

other parts of the hospital systems, such as the laboratory reports and text notes [2].

Hence, it is often left to the clinicians to compile and process mentally the continuous

data generated by the monitors and other intermittent data generated by the clinical

information system in order to get a complete understanding of a patient’s physical

conditions. In an ICU, clinicians not only have to process accurately a tremendous

amount of data under extremely tight time constraints, but also have to deal with

the inherent noises and artifacts arising from poor data integration and organization.

Dealing with all these challenges adds undesirable overhead to a clinician’s work and

can often lead to errors and delays of judgment resulting in the compromise of patient

care. The study by Donchin et al. [3] noted that one major cause of human errors

16

in the ICU is the difficulty in assessing patient state, which is directly related to the

amount of overhead shouldered by clinicians in compiling and interpreting relevant

patient information in the ICU.

In addition to generating a wealth of poorly organized and integrated information,

the modern ICUs are also plagued by over-sensitive alarm systems. Most alarms in

today’s ICU are based on simple thresholds, meaning an alarm is triggered when

the value of a physiological signal falls out of a predefined range of acceptable values.

Such a simple alarm system is prone to generate excessive false alarms caused by non-

physiological noise such as baseline wonder in a signal due to disconnected electrodes

resulting from patient movements. The study by Lawless et al. [4] has shown that over

80% of alarms produced in a modern ICU are false positives. Since the omission of an

alarm of a single life-threatening event is much more disastrous than generating a high

number of false alarms, hospital alarm systems are set to be highly sensitive. However,

an alarm system that produces a large number of false positives leads not only to

wasted time and resources of clinicians but also to the neglect of truly dangerous

events either through fatigue and desensitization to alarms or through the masking

of real events by other false alarms [5].

1.1.2 Advanced Patient Monitoring System (AMS) and MIMIC

II

The data issues and the over-sensitive alarm systems, coupled with a shortage of

clinicians in the ICUs facing an increasingly aging and hence more fragile patient

population [6] call for research and development of an Advanced Patient Monitoring

System (AMS). An AMS facilitates a clinician’s decision making process by generating

intelligent alerts based on algorithms that analyze relevant patient information using

advanced signal processing, modeling and classification techniques.

The Multi-parameter Intelligent Monitoring for Intensive Care II (MIMIC II) is

the product of the initiative by the MIT Laboratory for Computational Physiology

(LCP) to create a massive, temporal database to facilitate the research and develop-

17

ment of an AMS[6]. The database contains comprehensive records of patient infor-

mation available in the ICU, ranging from the continuous time series data and alarms

generated by the bedside monitors and mechanical ventilators to laboratory reports,

medication records, progress and discharge summaries compiled by clinicians, suffi-

cient to replicate a patient’s profile in the ICU. Presently, the MIMIC II database

contains over 3500 patient records collected from multiple ICUs of a hospital in Mas-

sachusetts, occupying over 1 terabyte in disk space.

Due to the massive size and scope of the MIMIC II database, manually identifying

regions or episodes of physiological interest among the huge number of patient records

is an extremely laborious and time-consuming procedure. Therefore, a search engine

that can automatically identify regions of physiological interest that meet a set of

time series search criteria is necessary to improve the usability of the database. With

slight modification, the algorithms in the search engine that identify notable regions

in a time series physiological data stream can serve as a building block for future

intelligent alert systems or any other AMS algorithm.

Another critical step in analyzing and distributing the MIMIC II data is to convert

the data into a readily readable and searchable format. Over the last 20 years, the

LCP has developed a robust, open-source data format, which supports annotations,

known as the Wave Form Database (WFDB) format [9], and a wide array of signal

processing tools to facilitate analysis of biomedical waveforms. The original time

series data in MIMIC II were recorded in a proprietary data format developed by

Philips Medical Systems. The Philips data schema was designed for simple archiving

purposes and lacks proper support for research and development of advanced signal

processing algorithms. Hence, significant effort was spent to convert the trend and

waveform data in the MIMIC II database into an open source format.

1.2 Thesis Goals and Outline

This thesis is divided into two main parts. The first part of this thesis discusses the

effort in converting the trend and waveform data in the MIMIC II database from

18

the proprietary Philips format to an open source format. The second part of this

thesis describes the development of a search engine that supports time series searches

defined based on thresholds and gradients of clinical measurements in the records.

There are 4 main objectives for this thesis:

• To describe the issues in converting the trend and waveform data in the MIMIC

II database from a proprietary format to an open source format.

• To discuss critical issues in the current data collection process and suggest

possible improvements.

• To explore MATLAB algorithms to perform time series searches on a sparse

dataset efficiently and accurately .

• To discuss the limitations of the search engine and suggest future directions of

research.

This thesis is organized in 4 chapters.

Chapter 2 describes in detail the proprietary data schema used to store the trend

and waveform data in the MIMIC II database and the algorithms developed to con-

vert the data from the proprietary format to an open-source format. The chapter

also discusses unresolved problems in data conversion and the ongoing effort to cre-

ate unified trend and waveform records for each patient. In addition, deficiencies

in the current data collection process are reviewed and potential improvements are

suggested.

Chapter 3 presents the design and implementation of a search engine for time

series searches on an irregularly sampled sparse dataset. As currently implemented,

the search engine supports time series searches with basic criteria defined based on

thresholds and gradients of clinical data samples and complex criteria formed by

combining the basic criteria with logical operators. The performance of the search

engine is evaluated by performing searches to detect clinically interesting physiological

events in patient records. A selected set of patient records detected by the search

19

engine to contain physiological episodes of interest are presented as case studies to

highlight the strengths and weaknesses of the search engine.

Conclusions to the data conversion project and the search engine project, together

with suggestions for future work, are presented in Chapter 4.

20

Chapter 2

Data Conversion: from Proprietary

to Open Source

2.1 Overview

The MIMIC II database includes two different types of data:

1. Data generated by bedside patient monitors including waveforms, trends and

alarms.

2. Clinical information consisting of lab results, nurses’ progress notes, intravenous

(IV) medications, fluid balance, and patient demographics, and other relevant

data from hospital archives.

As of August 2nd 2005, the MIMIC II database contains time series data for

over 3, 500 patients occupying over 1 terabyte in hard disk space. The LCP has

also downloaded and incorporated into the database the clinical information of an

additional 17, 000 patients.

Since the clinical information was downloaded as a standard Oracle database

dump, there is no need to convert the database for clinical information into an open

source format. However, time series data recorded from bedside monitors (trends and

waveforms in particular) were stored in a proprietary and experimental Philips format

that lacks a complete Application Program Interface (API) for easy and efficient

21

access to data. Therefore, in order to achieve the goal of building an open-source

database that can serve as the basis for research and development of an AMS, it is

necessary to convert the time series data in MIMIC II to a format that allows fast

and efficient access and searches of the data.

This chapter provides a brief overview of the data collection process for MIMIC

II and a description of the source data schema for trend and waveform data. Then,

Section 2.4 provides a brief introduction to the target data schema, the Waveform

Database (WFDB) format. This description of is followed by a discussion of the

problems discovered in data conversion and the algorithms developed to resolve those

problems. The results of data conversion for MIMIC II and the continued challenges

of merging time series data and mapping time series data with clinical information

are then presented. Finally, some potential approaches to improve data collection for

massive, multi-parameter databases are explored.

2.2 Data Collection

Figure 2-1 presents an overview of MIMIC II data collection process. Clinical infor-

mation in CareVue [10], a proprietary clinical data repository consisting of lab tests,

progress notes, and IV (intravenous) medications, is first archived in the Philips In-

formation Support Mart (ISM), an Oracle-based relational database. The data in

the ISM is then downloaded to a custom-built Oracle database via a Virtual Private

Network (VPN) connection between the LCP and the hospital.

Data collection for time series data involves a number of intermediate steps, as

shown in Figure 2-1. The process begins with storing data from the bedside monitors

in a central database server known as the Philips Information Center Database Server

(PICDBS). The data contain up to four continuously digitized signals such as ECG

leads, ABP, PAP waveforms (Table 2.5) sampled at 125 Hz; up to 30 physiological

trends such as HR, ABPsys, ABPdias, SpO2 (Table 2.3) sampled at 1-minute intervals;

alarms generated by the monitors and nurse central station; and indications of signal

loss or failure to process data (“In-Ops”). The data from the PICDBS are then

22

continuously retrieved and stored by a customized archiving agent in a proprietary

data format developed by Philips. At approximately two-week intervals, the data

from the archiving agent are manually downloaded to an external FireWire hard disk

drive which is physically transported to the LCP. At the LCP, the data from the

external hard disk are uploaded to RAID-equipped Linux file servers [6].

Figure 2-1: MIMIC II data collection process. Continuous physiological waveforms
from bedside monitors are archived from the PICDBS by a customized archiving
agent. Clinical information from the Philips CareVue repository is archived in the
ISM and then downloaded via a VPN connection to a custom-built Oracle database
[7].

23

2.3 Source Data Schema

The 2 main types of time series data in the MIMIC II database, the trend data and

the waveform data, were stored in 2 different proprietary formats. While the trend

data format is straightforward, the waveform format is significantly more complex as

will be discussed below.

2.3.1 Trend Schema

The trend files in Philips format are named ParamX.cfg, where X is a four or five-

digit case identification number for the patient. The schema for a trend file is shown

in Table 2.1. Each trend file can be viewed as a table with 31 columns, the first

column being the time stamp and each of the remaining columns being a trend, such

as HR, ABPSys, or ABPDias (the complete list of which is shown in Table 2.3). Any

missing data in the table is represented by a special value, −888.

Table 2.1: Data schema of a trend file. Each trend file is a table with 31 columns:
the first column being the time stamp and each of the remaining 30 columns being a
trend data (-888 = data not available).

Time Stamp HR ABPSys ABPDias CO
.
.

2001/08/08 05:33:55.345 70.00 125.540 85.830 . . -888.00
.
.

Each time stamp in a trend file is an array of eight 16-bit unsigned short integers,

each of which represents a time stamp attribute. All time stamp attributes are listed

in Table 2.2. According to the schema, the time stamps are evenly sampled at 1
60

Hz

(once per minute) when available.

Table 2.3 lists all possible trend data types in their order of appearance in a Philips

trend file. All trend data were stored as IEEE single-precision floating point numbers

[11].

24

Table 2.2: Data Schema of a time stamp. Each attribute is a 16-bit unsigned short
integer

Attribute Description
1 Year
2 Month
3 Day of Week
4 Day
5 Hour
6 Minute
7 Second
8 Millisecond

2.3.2 Wave Schema

Waveform files in Philips format are named WaveX.cfg, where X is a four or five-

digit case identification number for the patient. Figure 2-2 presents the schema for

the first 3 minutes of a sample waveform file. In the example, there are 3 signals,

each representing a physiological signal recorded by a bedside monitor at 125 Hz. A

waveform file can contain up to 4 different signals. The signals are broken down into

1-minute segments and interleaved to form structures known as WaveformRecords.

Hence, the 3-minute segment of signals shown in Figure 2-2 is stored as an array

of 3 WaveformRecords in the wave file. A 1-minute segment of a signal within a

WaveformRecord is called a waveform snippet. For each waveform snippet within a

WaveformRecord, there is at least one WaveInfo structure that describes the lead,

gain, and baseline values of the waveform snippet.

The lead of a signal is a term originated from the ECG and specifies the physical

lead connected to a patient from which the signal is recorded. In the Philips waveform

format, the concept of a lead is generalized to other waveforms such as ABP , so that

the lead value is essentially a waveform identifier. Signal values are recorded in

analog-to-digital converter (ADC) units, or adus. The gain for each signal specifies

the number of adus corresponding to one physical unit, and the baseline value specifies

the value of the ADC output that would map to 0 physical units at the input.

Clinical staff routinely change the lead, gain, and baseline values of bedside mon-

25

Table 2.3: All types of available trend data in a trend file. Each trend sample value
is an IEEE single-precision floating point number.

Column Trend Description
1 N/A Time Stamp
2 HR Heart Rate
3 ABPSys Arterial Blood Pressure (Systolic)
4 ABPDias Arterial Blood Pressure (Diastolic)
5 ABPMean Arterial Blood Pressure (Mean)
6 PAPSys Pulmonary Artery Pressure (Systolic)
7 PAPDias Pulmonary Artery Pressure (Diastolic)
8 PAPMean Pulmonary Artery Pressure (Mean)
9 CV P Central Venous Pressure

10 PULSE Pulse Rate
11 RESP Respiratory Rate
12 SpO2 Saturation Périphérique en Oxygène (Pulse oximetry)
13 CO2 Carbon Dioxide
14 ST I Standard ECG Lead I
15 ST II Standard ECG Lead II
16 ST III Standard ECG Lead III
17 ST AV R Augmented Unipolar Right Arm ECG Lead
18 ST AV L Augmented Unipolar Left Arm ECG Lead
19 ST AV F Augmented Unipolar Left Leg ECG Lead
20 ST V 1 Precordial (Chest) Lead V1

21 ST V 2 Precordial (Chest) Lead V2

22 ST V 3 Precordial (Chest) Lead V3

23 ST V 4 Precordial (Chest) Lead V4

24 ST V 5 Precordial (Chest) Lead V5

25 ST V 6 Precordial (Chest) Lead V6

26 NBPSys Non-invasive Blood Pressure (Systolic)
27 NBPDias Non-invasive Blood Pressure (Diastolic)
28 NBPMean Non-invasive Blood Pressure (Mean)
29 PAWP Pulmonary Artery Wedge Pressure
30 SpO2,Aperiodic Aperiodic Pulse Oximetry
31 CO Cardiac Output

26

Figure 2-2: Snapshot of the first 3 minutes of a sample waveform file. The sample
file contains three 125-Hz physiological signals. The signals are divided into 1-minute
segments and then interleaved to form structures known as WaveformRecords. A 1-
minute recording of a signal within a WaveformRecord is called a waveform snippet.
Special structures, known as WaveInfo structures, specify the lead, gain, and baseline
of a signal at any time within a waveform snippet.

27

itors to improve the visual display of physiological signals. Hence, the lead, gain,

and baseline values of each signal can change dynamically at any time throughout a

waveform file as shown in Figure 2-2. Each change in lead, gain, or baseline value

is indicated by an additional WaveInfo structure within the corresponding waveform

snippet.

The schema for a WaveformRecord structure is shown in Figure 2-3. Each Wave-

formRecord consists of a time stamp, specifying the starting time of the record, and

up to 4 waveform snippets. The structure of a time stamp in a WaveformRecord is

the same as that shown in Table 2.2. Each waveform snippet in turn contains 1 or

more WaveInfo structures and a 1-minute snippet of data points. Each data point is

an 16-bit integer value, holding an 8-bit resolution sample in the lower 8 bits. Each

WaveInfo structure has a time stamp of its own and a WaveSupportStruct. A Wave-

Info structure is added to a waveform snippet to update changes in the lead, gain

and offset values of a signal at particular times within the waveform snippet. The

structure of a time stamp in a WaveInfo structure is the same as that shown in Table

2.2.

The schema for a WaveSupportStruct structure is shown in Table 2.4. Some crit-

ical attributes of a WaveSupportStruct are validFlag, which indicates the validity

of the WaveSupportStruct ; leadType, which identifies the lead from which the sam-

ple values were recorded; and markSizeMin, markSizeMax, markSizeValueMin, and

markSizeValueMax, which encode the gain and baseline values of the signal recorded

by the monitor as follows:

gain =
markSizeMax − markSizeMin

markSizeV alueMax − markSizeV alueMin

baseline =

markSizeMin − 128 if lead is NOT ECG

0 otherwise

Table 2.5 shows the known mappings from leadType to the actual lead types in

an ICU bedside monitor.

28

Figure 2-3: Data schema of a WaveformRecord structure. Each WaveformRecord
consists of a time stamp and up to 4 waveform snippets. Each waveform snippet
in turn contains 1 or more WaveInfo structures and a 1-minute snippet of sample
values. Each WaveInfo consists of a time stamp of its own and a supplementary
WaveSupportStruct.

29

Table 2.4: Data schema of a WaveSupportStruct.

Attribute Name Data Type
validFlag unsigned long (32-bit) integer
timeSec unsigned long (32-bit) integer
timeMsec unsigned short (16-bit) integer
leadType unsigned short (16-bit) integer
bw unsigned short (16-bit) integer
scaleLabel unsigned short (16-bit) integer
scaleStatus signed (32-bit) integer
calibrated signed (32-bit) integer
validity signed (32-bit) integer
sampleMin unsigned short (16-bit) integer
sampleMax unsigned short (16-bit) integer
valueMax IEEE single-precision float
valueMin IEEE single-precision float
markSizeMin unsigned short (16-bit) integer
markSizeMax unsigned short (16-bit) integer
markSizeValueMax IEEE single-precision float
markSizeValueMin IEEE single-precision float
samplingIntervalms IEEE single-precision float
bwFreq IEEE single-precision float array of length = 2

30

Table 2.5: Known mappings from leadType to actual lead types in an ICU monitor

leadType Value Lead Type Description
62101 I Standard ECG Lead I
62102 II Standard ECG Lead II
62103 III Standard ECG Lead III
62104 AVR Augmented Unipolar Right Arm ECG Lead
62105 AVL Augmented Unipolar Left Arm ECG Lead
62106 AVF Augmented Unipolar Left Leg ECG Lead
62107 V Precordial (Chest) Lead V
62108 V1 Precordial (Chest) Lead V1

62109 V2 Precordial (Chest) Lead V2

62110 V3 Precordial (Chest) Lead V3

62111 V4 Precordial (Chest) Lead V4

62112 V5 Precordial (Chest) Lead V5

62113 V6 Precordial (Chest) Lead V6

62114 MCL1 Modified Chest Lead 1
62115 MCL2 Modified Chest Lead 2
62116 MCL3 Modified Chest Lead 3
62117 MCL4 Modified Chest Lead 4
62118 MCL5 Modified Chest Lead 5
62119 MCL6 Modified Chest Lead 6
62028 RESP Respiratory Rate
62029 PLETH Oximeter Plethysmographic waveform
62004 ABP Arterial Blood Pressure
62010 PAP Pulmonary Artery Pressure
62008 CVP Central Venous Pressure

31

2.4 Target Data Schema

The Waveform Database (WFDB) format was chosen as the target data schema for

the trend and waveform data in MIMIC II database for the following 3 main reasons:

• The WFDB library has been used by researchers worldwide for research and

development of a wide variety of biomedical signal processing, display, analysis,

and annotating applications over the past twenty years [12]. Hence, the existing

set of open-source analysis libraries (particularly for the ECG) will facilitate the

rapid analysis of the MIMIC data.

• WFDB, unlike the Philips proprietary format, is open-source and community-

supported with backward compatibility in mind, and hence much easier to main-

tain and support for future applications.

• The LCP has extensive knowledge about the structure and design of the WFDB

library.

2.4.1 WFDB Overview

The WFDB library, written in the C programming language, is a set of functions that

provides easy and efficient storage and access to digitized, annotated signals stored in

a variety of formats [13]. Although the WFDB library was originally designed for use

with ECG databases, the library has now been expanded to support databases that

include signals such as blood pressure, respiration, oxygen saturation, and the elec-

troencephalogram (EEG). Today, the WFDB library is used by researchers worldwide

for research and development of applications in biomedical signal processing. Over

60 freely available biomedical signal processing applications have been written with

WFDB library support [12].

A WFDB database consists of a set of records, each of which contains a number

of continuous time series signals for a single subject. Each WFDB record contains at

least a header file and a data file. A header file contains information about the record

including the beginning time stamp, the number of signals, the sampling frequency

32

and the number of samples in the record. Additional information regarding individual

signals in the record such as the resolution, gain and baseline values of each signal,

and the name and format of the data file that contains the sample values of each signal

is also specified in a header file. It is possible to store different signals belonging to

the same record in multiple (possibly non-contiguous) data files in different formats.

A data file stores sample values of one or more signals belonging to a single record

in the format specified in the header file of the record. The signals in a record are

assumed to be sampled at the same frequency throughout the duration of the record.

Although the gain and baseline values for individual signals may be different, each

signal is assumed to retain a constant gain and baseline values throughout individual

data files in each record.

2.5 Data Conversion

There was no program available to read either trend or wave data in the proprietary

formats. Only snippets of the header files that defined the data structures stored in

trend and wave files were made available by Philips. Hence, the biggest challenge

in converting MIMIC II trend and wave data was the handling of the discrepancy

between the data schema specification provided by the vendor and the actual data

recorded on disk.

Two separate programs, named wfdbtrend and wfdbwave, were developed to con-

vert the trend and waveform data respectively. Each program accepts as input a trend

or waveform file in Philips format and converts the input file to the WFDB format.

The programs were developed, compiled and tested using GCC, the GNU C Com-

piler, on an IBM compatible Personal Computer running Fedora Core 3, a variant of

the Linux operating system. The programs are located at [14] and are available for

download with permission from the LCP. To compile the programs, one needs to first

install and set up the WFDB libraries. For more information about installing and

compiling applications with WFDB, please refer to the WFDB Programmer’s Guide

[9]. Two bash shell scripts, convert-all-trend-data.sh and convert-all-wave-data.sh,

33

were written to automate the process of data conversion for trend and waveform data

respectively.

2.5.1 Trend Conversion

Problems in Trend Schema

Although all time stamps in a trend file were expected to be 1 minute apart from one

another by specification, it was discovered that over 80% of the records contain time

stamps that were not exactly 1 minute apart. Furthermore, there were other time

stamp problems such as invalid time stamps and missing or repeated time stamps.

Since all trend files consisted of the same number and type of signals and the

unavailable samples were filled with a special value, −888, it was impossible to know

beforehand which signals in a file contained actual data. During data conversion,

about 2% of the trend files were found to contain no real data.

Since sample values were stored as IEEE single-precision floating point numbers in

the proprietary trend files whereas WFDB requires sample values be written as inte-

gers, simply rounding off the floating point values into integer values could potentially

cause loss of precision in sample values.

Algorithms for Trend Conversion

For each proprietary trend file, ParmX.cfg, a corresponding WFDB record, named

m2t X, is generated, where X is a 4 or 5 digit case identification number for a patient.

Each WFDB trend record consists of a header file, named m2t X.hea, and a data file,

named m2t X.dat file, in which the trend values were written as Format 16 integers

(16-bit two’s complement amplitude representation).

Trend conversion involves 3 steps as shown in Figure 2-4:

1. Read the entire trend file into memory, determining the earliest time stamp,

latest time stamp and the signals that contain real data in the trend file.

34

2. Determine the sequence in which the sample rows are to be written into a

WFDB file.

3. Create a new WFDB file and write only the signals that contain real data into

the new file.

Figure 2-4: Data flow chart for trend conversion.

The algorithm to determine the sample sequence is shown in Figure 2-5. The

algorithm involves the following 5 steps:

1. The entire trend file is read into memory and all time stamps are rounded to

the closest minutes.

2. A WFDB Sequence array of length: (LatestT imeStamp−EarliestT imeStamp+

1) is allocated and all its elements are initialized with -1.

35

3. For each row i of samples in the trend file, determine its position in the WFDB Sequence

array, Pi, by finding Ti − S, where Ti is the time stamp of the row i and S is

the earliest time stamp, and Ti − S yields the number of minutes elapsed from

S to Ti.

4. Write the row number R in the P th element of the WFDB Sequence array. If

2 rows have the same time stamp, the data in the row that comes later in the

trend file will be written into the target WFDB file. For example, as shown in

Figure 2-5, since both rows 4 and 6 have the same time stamp, only data from

row 6 is written into the target WFDB file.

5. For each element in the WFDB Sequence array containing a positive row num-

ber, R, write the Rth row of sample into the WFDB file. For each element in the

WFDB Array with the value −1, write a sample row filled with WFDB null

value, −32768, into the WFDB file. The null values from the original trend

file, −888, are also converted into WFDB null values for consistency.

Figure 2-5: Graphical illustration of the algorithm to determine sequence in which
rows of a trend file are written into a target WFDB file.

36

Sample values, stored as IEEE single-precision floating point numbers in a trend

file, were converted to Format 16 in WFDB. To prevent loss of precision in sample

values while converting from floating point numbers to integers, a gain value was

assigned to each signal depending on its range of possible values. Sample values for

each signal were amplified by their respective gain values before writing into WFDB

to retain the required precision. The gain values of the (unscaled) units of all signals

in a trend file are listed in Table 2.6.

2.5.2 Wave Conversion

Problems in Wave Schema

The Philips waveform files were also plagued by time stamp problems similar to

those observed in trend files. However, there were fewer than 1% of waveform files

that did not violate the time stamp schema specified by Philips. Due to the size of

waveform files (over 1 gigabyte of disk space for some cases), it was not practical to

read the entire waveform into memory and apply the sample sequence determination

algorithm used for trend conversion. Hence, it was necessary to convert the waveform

file minute-by-minute into the WFDB format.

The use of WaveInfo structures to identify each signal or indicate changes in the

lead, gain and baseline values of a signal also introduced numerous unexpected prob-

lems. Although each signal was expected to contain at least 1 WaveInfo structure for

identification purpose, there were often signals that contained no WaveInfo. More-

over, there were often cases where a signal contained duplicate or corrupted WaveInfo

structures.

Although each one-minute segment of signal was expected to contain a fixed num-

ber (125 samples

sec
· 60sec = 7500samples) of samples, on average, about 1% of segments

in a wave file contained fewer or more than 7500 samples.

In the proprietary waveform file format, the lead, gain or baseline values of a signal

can change dynamically at any time. On the other hand, a WFDB record requires

the lead, gain and the baseline of a signal to remain fixed throughout the record.

37

Table 2.6: Gains and Units of Physiological Signals in a Trend File

Column Trend Gain Unit (unscaled)
1 Time Stamp N/A N/A
2 HR 10 beats per min
3 ABPSys 10 mmHg
4 ABPDias 10 mmHg
5 ABPMean 10 mmHg
6 PAPSys 10 mmHg
7 PAPDias 10 mmHg
8 PAPMean 10 mmHg
9 CV P 10 mmHg

10 PULSE 10 beats per min
11 RESP 10 per min
12 SpO2 100 %
13 CO2 100 %
14 ST I 100 mV
15 ST II 100 mV
16 ST III 100 mV
17 ST AV R 100 mV
18 ST AV L 100 mV
19 ST AV F 100 mV
20 ST V 1 100 mV
21 ST V 2 100 mV
22 ST V 3 100 mV
23 ST V 4 100 mV
24 ST V 5 100 mV
25 ST V 6 100 mV
26 NBPSys 10 mmHg
27 NBPDias 10 mmHg
28 NBPMean 10 mmHg
29 PAWP 10 mmHg
30 SpO2 Aperiodic 10 %
31 CO 100 Lit per min

38

The most challenging problem observed in a Philips waveform file was a byte-

skipping error, in which an odd number of bytes were inserted or skipped at a certain

point in a file, making all subsequent content of the file unreadable. Over 20% of

Philips waveform files contained one or more occurrences of such a byte-skipping

error.

Algorithms for Wave Conversion

For each Philips wave file, WaveX.cfg, a set of corresponding WFDB records, named

m2w X N, is generated, where X is the 4 or 5 digit case identification number for a

patient and N can potentially range from 0 to the total number of WaveInfo structures

in a Philips wave file. Each WFDB wave record is made up of a header file, named

m2w X N.hea, and a data file, named m2w X N.dat file.

Figure 2-6 presents the top-level flow chart for the waveform conversion program

from Philips format to WFDB format. In each iteration of the algorithm, a 1-minute

segment of the waveform file, known as the WaveformRecord by Philips terminology,

is read into memory. Any waveform snippet in a WaveformRecord without at least one

valid WaveInfo structure is discarded. Each WaveInfo structure within a waveform

snippet is rigorously validated and any corrupted or duplicate WaveInfo structures

are discarded. If the number of samples for a minute-long waveform snippet is less

than 7500, the missing samples are filled in by WFDB null values at the end of the

segment. If the number of samples exceeds 7500, only the first 7500 samples are

retained. Since sample values contain only 8-bit resolution data, each sample value

is converted from a signed 16-bit integer value in a wave file to Format 80 (an 8-bit

offset binary representation) in WFDB.

Consecutive WaveformRecords are written to a single WFDB record until 2 con-

secutive WaveformRecords contain time stamps that are not exactly 1-minute apart

or a change in the lead, gain, and baseline of a signal occurs within a single waveform

snippet. Therefore, a single waveform snippet can potentially be converted into nu-

merous WFDB records and converting a single proprietary wave file can potentially

result in a large number of WFDB records.

39

Figure 2-6: Data flow chart for wave conversion.

40

The regular conversion algorithm is interrupted whenever a byte-skipping error

is encountered. By trial and error, it was found that the file pointer needs to be

rewound by at least 51 bytes in order to successfully recover a byte-skipping error.

Therefore, in the event of a byte-skipping error, the file pointer is rewound to 51 bytes

before the point of failure and the data is scanned byte-by-byte until a known data

structure such as a time stamp or an object delimiter is identified. Once a known

data structure is found, the regular conversion algorithm is resumed.

2.6 Data Conversion Results and Data Verifica-

tion

2.6.1 Data Conversion Results

Table 2.7 presents the results from converting MIMIC II trend and wave files from

their original proprietary formats to WFDB format. The data conversion programs

successfully converted all trend files with at least 1 valid sample value and all wave

files with at least 1 valid WaveformRecord. It is worth noting that about 6% of

trend files (220 files) contained no valid sample and about 7% of wave files (122 files)

contained not a single WaveformRecord.

Table 2.7: Summary of Data Conversion Results

No. of ‘non-empty’ No. of Successful
Data Type Source Files Conversions Success Rate (%)
Trend 3190 3190 100%
Wave 1579 1579 100%

2.6.2 Data Verification

To verify the correctness of the data conversion algorithm, 15 random cases were

chosen and the data from the trend files for those cases were cross-verified with those

41

from the wave files. The cross-verification process for each case involves the following

5 steps:

1. Select 10 random time points in a WFDB trend file.

2. For each time point selected in step 1, find the corresponding WFDB wave file

containing the time point.

3. Open up a visual image of the WFDB wave file segment of interest in Wave, a

WFDB signal visualizing tool [12].

4. Estimate the heart rate from the RR intervals of the ECG leads available from

the plot generated by Wave and cross-verify with the heart rate recorded in the

trend file.

5. If ABP and/or PAP signals are available for the wave file segment, cross-verify

the visual estimates of systolic and diastolic ABP and/or PAP values observed

in the plot generated by Wave with the corresponding ABPsys, ABPdias, PAPsys

and PAPdias values recorded in the trend file.

The results from data verification showed that the values in trend files for all time

points selected for verification were matched by the corresponding values in wave files

with less than 2% error.

2.7 Continued Challenges

2.7.1 Segmentation of a Wave File into multiple WFDB records

A single wave file in the proprietary format can be segmented into multiple WFDB

records during conversion (Figure 2-7). The segmentation may be due to irregularly-

spaced time stamps, or changes in the lead, gain or baseline values of one or more

signals in the wave file. Such segmentation could add undesirable overheads to appli-

cations designed to process a continuous stream of WFDB data for a single subject.

The latest release of the WFDB library developed by George and Benjamin Moody

42

deals with the problem of segmentation by creating a meta-header file that combines

multiple WFDB wave segments belonging to the same case and allows applications

to access a single meta-record associated with the meta-header file for a single case.

Figure 2-7: Segmentation of a single proprietary wave file into multiple WFDB records
during Wave-WFDB conversion.

2.7.2 Identical Cases in Different Date Directories

The source files for time series data, including trend and wave files were organized

in directories named according to their data transfer dates in YY-MM-DD format

(Figure 2-8). On a data transfer date, all time series data archived in the PICDBS

(Figure 2-1) were downloaded to an external hard disk which was physically trans-

ported to the LCP where the files were uploaded to RAID-equipped Linux file servers.

All downloaded time series data files were then purged from the PICDBS.

For a patient who was still hospitalized in an ICU on a data transfer date, his

or her time series data recorded up to the data transfer date were downloaded in a

wave file named Wave X.cfg and a trend file named Param X.cfg, where X is the case

identification number for the patient. After the trend and wave files were downloaded

and purged from the PICDBS on the data transfer date, the recording of time series

data for the patient is resumed in newly created Wave X.cfg and Param X.cfg files.

Those newly created Wave X.cfg and Param X.cfg files would be transferred to the

file server on a subsequent data transfer date. Hence, wave and trend files with identi-

cal case identification numbers can exist under multiple data transfer date directories.

43

Figure 2-8: MIMIC II time series data organization. The files are stored in directories
named after the data transfer dates. Case 1234 appears in two directories because
the data for the case was partially downloaded on two different data transfer dates.

44

This phenomenon is clearly illustrated by the patient with case identification number

1234 under the directories: 02−05−13/ and 02−05−27/ in Figure 2-8. Such virtual

segmentation caused by constraints in data transfer adds undesirable overheads to

applications expecting a continuous stream of data from WFDB. The meta-header

file feature in the next release of WFDB is designed to handle this virtual segmenta-

tion problem transparently from WFDB applications in a manner analogous to the

way it handles the wave file segmentation problem discussed in the previous section.

2.7.3 Mappings from Cases to Patients

The MIMIC II time series data recorded by the bedside monitors in an ICU are iden-

tified by a case identification number. On the other hand, the clinical information

from the CareVue repository is identified by a patient identification number. A pa-

tient identification number assigned by the hospital to a patient is unique for each

patient. A case identification number is assigned to a bed by the monitoring system

when a patient is admitted to an ICU. Hence, a patient could be assigned multiple

case identification numbers if he or she is admitted multiple times to a single ICU or

different ICUs during his or her stay in the hospital. Furthermore, if the case identi-

fication number is not reset properly when a new patient is admitted, the recording

for a single case identification number could contain physiological data recorded from

multiple patients. For over 40% of the patient identification numbers in the current

MIMIC II database, the corresponding case identification numbers were not properly

matched because the clinical staff in the ICU failed to input for each case the medi-

cal record number which serves as the link between the case and the patient record

in the clinical information repository. LCP has initiated an effort to detect reliably

the mappings between the patient identification numbers and the case identification

numbers using the availability of different physiological signals for different patients

and the correlation between nurses’ verified data stored in the CareVue repository

and the trend data recorded by the bedside monitors.

45

2.7.4 Unknown Leads in Wave Files

Table 2.5 lists all the known mappings from the monitor manufacturer’s lead type

identification numbers to physiological signal leads. During data conversion, it was

discovered that the proprietary wave files contain recordings from some unknown lead

type identification numbers. Such signals were stored as unknown signals in WFDB.

Those unknown signals can potentially be identified with the help of expert clinicians

or advanced signal identification algorithms.

2.8 Suggested Improvements

Most problems related to time series data in the MIMIC II database were caused by

the limitations in physical equipment, the constraints in the data collection process

and the design shortcomings in the proprietary data format used to store the data.

Based on the experience with MIMIC II data conversion, the following 4 steps are

suggested to improve future data collection projects.

1. Human intervention should be minimized in data collection. The time spent

by a researcher traveling back and forth to download data represents wasted

man-hours in research effort. Real-time, automated electronic data transfer via

a VPN is a much more efficient and economical solution that also guarantees a

more timely and systematic data transfer.

2. A single identification number should be used consistently for each subject in

data collection. If multiple identification numbers need to be used, great effort

should be taken into establishing and maintaining mappings between different

identification numbers. Poor mappings between multiple identification num-

bers can lead to potential loss in data as well as wasted time, and energy in

retrospectively remapping the data.

3. Only completed cases should be retrieved and removed from the repository to

avoid virtual segmentation of data records caused by data transfer.

46

4. In any data collection effort, it is essential to use a data format that preserves

data integrity and allows systematic and efficient access to data. Using a poorly

designed data format can potentially result in great losses in data, time, money

and other valuable research resources.

47

48

Chapter 3

Search Engine for a Massive,

Multi-parameter Clinical

Information Database

3.1 Overview and Motivation

Given the massive size and scope of the MIMIC II database (over 3000 patient records,

consisting of over 200 signals totalling over 1 terabyte of data), it is impractical to

manually examine records in the database and identify those containing interesting

physiological events. Therefore, it is necessary to have a search engine for the database

that allows efficient search and retrieval of patient records containing episodes of phys-

iological interest. An ideal search engine for a massive multi-parameter biomedical

database should be able to respond to not only simple queries on patient demo-

graphics and information recorded in text notes but also sophisticated time-oriented

multi-dimensional queries on waveform and trend recordings from bedside monitors

as well as other clinical information including laboratory results, medications and

fluid balances.

Searches on signals from bedside patient monitors such as ECG and trend record-

ings are difficult not only because of the massive amount of data involved but also

49

because of the inherent susceptibility of those signals to noise and the difficulty in

describing and measuring the ‘similarity’ between signal features. Therefore, as a first

step towards building a comprehensive search engine for the MIMIC II database, a

simplified search engine was built to handle time-oriented, multi-dimensional queries

on the clinical information consisting of computerized laboratory results, medications

and nurses’ verified values recorded from the bedside monitors. By limiting searches

to such variables, noises and artifacts are greatly reduced.

Excluding from the search engine the high-resolution, noise-prone waveform and

trend data from bedside monitors does not necessarily preclude the detection of in-

teresting physiological events from patient records. Patient records with episodes of

physiological interest can be identified by searching through only computerized lab

results, medications and human-verified clinical data. For example, a potential way

to detect episodes of acute renal failure is to look for patient records whose creatinine

level exceeds 2 and whose rise in creatinine trend level exceeds 200% within 2 days.

In this example, there are 2 different types of queries involved:

1. A threshold query that looks for all creatinine measurements greater than 2.

2. A gradient query that looks for changes in creatinine level that exceed 200%

within 2 days.

The MIMIC II search engine described in this chapter is designed to handle both

threshold and gradient queries as well as more complex queries formed by joining

these 2 types of queries using logical operators ‘AND’, ‘OR’ and ‘NOT’.

Section 3.2 provides an overview of the existing technologies for indexing and

searching time series data, and discusses the need to explore new techniques to ef-

ficiently conduct time-oriented queries. Section 3.3 then describes the primary ob-

jectives of the MIMIC II search engine design. The design of the search engine’s

underlying data structures is presented in Section 3.4. The algorithms developed to

process the data structures are discussed in Section 3.5. The web-based interface de-

veloped for the search engine using the MATLAB Webserver is presented in Section

50

3.6. Finally, the chapter concludes by describing the performance of the search engine

and its strengths and limitations in Section 3.7.

3.2 Existing Technologies for Indexing and Search-

ing Time Series Data

Time-oriented or temporal queries cannot be efficiently implemented in traditional

relational databases and SQL. Therefore, over the past 20 years, there has been active

research on the design and implementation of temporal databases [15]. However, as

presented in the survey by Chomicki et al. [16], temporal query languages such as

TQuel [17], and TSQL2 [18], not only have limited ability to express time intervals

using cumbersome syntax and semantics but also lack support for multi-parameter

time series data with different temporal resolutions.

As an alternative to temporal query languages, there has also been extensive re-

search on indexing time series databases using dimensionality reduction techniques

and handling time-based queries by searching on those indices. Some well-explored

dimensionality reduction techniques include the Discrete Fourier Transform (DFT)

[19, 20], Singular Value Decomposition (SVD) [21], the Discrete Wavelet Transform

(DWT) [20, 22, 23], and various approximation techniques [24, 25]. However, the DFT

assumes stationarity of the signal whereas SVD requires linearity in the combination

of the components of the signals. SVD also imposes strict orthogonality between the

components which may not necessarily be independent. The DWT requires linear

combination of wavelets while imposing significant overhead for storing and indexing

wavelet indices. The choice of wavelet in the DWT is often arbitrary as is the rele-

vant scale or approximation level. The approximation techniques, on the other hand,

require sophisticated data structures and algorithms while also imposing tremendous

overhead in storage requirement. Saeed et al. [26] proposed storing a selected set of

precomputed wavelet coefficients in a relational database to handle time-based queries

efficiently. Although this method outperforms conventional SQL approach by 2 or-

51

ders of magnitude for trend queries on precomputed wavelet coefficients, it does not

provide a satisfactory solution to queries that require wavelet coefficients that have

not been precomputed. Above all, there is no conclusive proof that any dimension-

ality reduction techniques can outperform an efficiently implemented program that

conducts a simple, exhaustive search on gradients in terms of accuracy and efficiency.

The design and implementation of a search engine that handles temporal queries by

the use of an algorithm that efficiently computes and searches an exhaustive set of

gradients for a given set of samples is presented in the remaining sections of this

chapter.

3.3 Design Objectives

The MIMIC II Search Engine was designed with 4 primary objectives.

1. The program is designed to serve as a filtering tool for researchers interested

in investigating patient records that meet specific pathophysiological criteria.

Due to the tremendous amount of data and the wide range and variety in the

types of patient records available in the MIMIC II database, the search engine

is designed to accommodate the need of researchers who need to focus on a

specific type of patient. Careful consideration was taken into designing a search

engine that provides researchers with maximum flexibility in specifying criteria.

2. The simple, yet efficient, algorithms used in the search engine to handle tem-

poral queries were developed to serve as a basis of comparison for more sophis-

ticated techniques for temporal searches.

3. The program was designed to be a building block for a more comprehensive

search engine. Therefore, modularity of components was an important factor in

design considerations for the search engine to ensure compatibility with future

extensions.

4. The data structures, functions and algorithms developed for the MIMIC II

search engine were designed to be as generalizable as possible so that they can

52

be extended for use in future signal processing, data mining or machine learning

applications.

The search engine was implemented in MATLAB 7 [27], a high-level computer pro-

gramming langauge with extensive libraries for signal processing, signal visualization

and numerical methods. MATLAB was chosen for its comprehensive set of built-in

libraries and efficiency for software development and debugging. The choice of MAT-

LAB also ensures portability because software written in MATLAB can be compiled

into an operating system-specific executable. Furthermore, since the WFDB tools

[28] package provides an interface between MATLAB and the WFDB library, build-

ing the search engine in MATLAB ensures the ability to extend the implementation

to bedside monitor data in the future.

3.4 Data Structure Design

The MIMIC II search engine, as implemented, is limited to searching lab results,

medications, demographic information and nurse-verified data downloaded from the

bedside monitors. All those data were originally downloaded and stored in a standard

relational database format as described in 2.2. Due to the overhead involved in writing

MATLAB programs to directly query a relational database, a selected set of 2048

patients that contain clinical data of interest was downloaded and organized into

MATLAB compatible structures which will be described in detail in the following

sections.

3.4.1 Clinical Information Structures

127 clinical data items for 2048 patients together with their demographic information

(age, sex and patient identification number (pid)) were retrieved and stored in data

structures (a-d) described below. Since MATLAB 7 can efficiently handle its data

structures in single precision floating point numbers much more efficiently than double

precision floating point numbers, without biasing any calculations, all data values were

53

converted into single precision floating point numbers whenever the loss in precision is

negligible (i.e. < 1%). All unknown values in the data structures are represented by

NaN (Not a Number) since MATLAB can efficiently operate on vectors containing

indeterminant elements (NaN).

a) Demographics

The demographics matrix stores the demographics information (pid, age and gender)

of the patients in the database. Table 3.1 shows the schema of the demographics

matrix. Ages of patients that exceed 89 years are all rounded to 89.9 to ensure

deidentification of protected health information [29]. In the sex column, male is

represented by 1 and female is represented by 2. The rows of the matrix are sorted

by pid in ascending order.

Table 3.1: Schema of the demographics matrix. Demographics has 3 columns (pid,
age and sex). Age above 89 years are rounded to 89.9. Male is represented by 1 and
female is represented by 2. The rows are sorted by pid in ascending order. NaN
indicates unknown.

pid age sex
. . .
5 55 2

22 64 1
23 89.9 NaN

. . .

b) columnMappings

Table A.1 in Appendix A shows the content of columnMappings, a cell array that

describes the type of items stored in each column of pidCareVue matrix (discussed in

the next section).

54

c) pidCareVue

The pidCarevue matrix stores values of nurse-verified data from the bedside moni-

tors, and ventilators, lab results, and medications. Table 3.2 shows the schema of

the pidCarevue matrix. Each column of the matrix holds a different type of value

specified by the corresponding cell in columnMappings (Table A.1 in Appendix A).

For example, column 1 in pidCarevue holds the pid while column 3 holds the CVP

of patients.

Table 3.2: Schema of the pidCarevue matrix. Each column of the matrix holds a type
of value specified by the corresponding cell in columnMappings (Table A.1). T = (the
number of 5-minute intervals elapsed from the earliest time stamp + 1). The values
of T for each patient are not regularly sampled. Rows in pidCarevue are sorted by
pid in ascending order. Rows with the same pid are sorted by T in ascending order.

pid T cvp . . . dopaminedrip
.

123 27 32.0 . NaN
123 33 28.0 . NaN
127 1 44.0 . 2.00

.

Each row in pidCarevue stores all available data for a particular patient at a

particular time point as single precision floating point numbers. Rows in pidCarevue

are sorted by pid in ascending order. Rows with the same pid are sorted by T in

ascending order. Since not all types of data are available for a patient at a particular

time point, many of the positions in pidCarevue are filled with NaN , which indicate

the data not being available. Despite the redundancy compared to a traditional

relational database schema, the data schema for pidCarevue allows very fast and

efficient retrieval of a specific type of data for a particular patient. For example, to

retrieve heartrate for patient with pid 123, one only needs to access the third column

in pidCarevue for the rows with pid 123.

The time stamp Ti for row i in pidCarevue is given by Ti = | ti
12
| + 1, where ti is

the time in hours since the beginning of the patient record and hence Ti is rounded

to the nearest 5 minute time period.

55

The 5-minute interval was chosen because the highest sampling frequency for the

data in the CareVue repository was 1
300

Hz. It should be noted that the time stamps

T for each patient in the pidCarevue matrix are not separated by regular intervals.

d) pidTimeLine

Table 3.3 shows the schema of the pidTimeLine matrix. The second column of the

matrix stores the starting time stamp of the patient with the pid in first column

in a serial date number format returned by the MATLAB datenum function. Since

converting the serial date number into single precision results in a significant precision

loss, all values in the matrix were stored as double precision floating point numbers.

The third column of the matrix stores the latest T observed in pidCarevue (Table 3.2)

for each patient. Hence, the third column of pidTimeLine is essentially the observed

duration of each patient record. For each searchable pid, there is a row of entry in

the matrix. The rows in the matrix are sorted by pid in ascending order.

Table 3.3: Schema of the pidTimeLine matrix. The first colum of the matrix holds
the list of pids in pidCarevue. The second column stores the earliest time stamp of
each patient observed in the database in a MATLAB serial date number format. The
third column stores the latest T observed in pidCarevue for each patient. The rows
are sorted by pid in ascending order.

pid start time length of record/duration
. . .

123 731065.791666667 973
127 731066.312500000 330
133 731066.833333333 61

. . .

3.4.2 Supplementary Data Structures

The following three supplementary data structures, (pidIndices, pidSampleCount, and

pidGradientStat), were designed to improve the performance of the search engine by

providing information to improve data access or screen out records that do not meet

search criteria.

56

a) pidIndices

The pidIndices matrix holds information that allows fast and efficient access to a pa-

tient’s data in the pidCarevue matrix. Table 3.4 describes the schema of pidIndices.

The matrix contains 3 columns, the first of which holds the list of pids in pidCarevue.

The second and third columns hold the beginning and ending row numbers that con-

tain data for the corresponding pid in pidCarevue. For example, since the beginning

row number is 515 and the ending row number is 540 for pid 123, one only needs to

retrieve data from rows 515 to 540 to access any data for patient with pid 123. For

each searchable pid, there is a row of entry in the matrix. The rows in pidIndices are

sorted by pid in ascending order.

Table 3.4: Schema of the pidIndices matrix. The first colum of the matrix holds the
pids. The second and third columns hold the beginning and ending row numbers in
pidCarevue for the corresponding pid. The rows are sorted by pid in ascending order.

pid beginning row ending row
. . .

123 515 540
127 541 590
133 591 604

. . .

b) pidSampleCount

The pidSampleCount matrix stores information regarding the number of real samples

(all samples excluding the NaNs) for each item that a patient record contains. The

search engine uses sample count to screen out records that cannot meet a specified

criteria. For instance, if the search is to look for patients with heart rates greater

than 110, a patient without any heart rate sample should never be considered as a

potential hit for the criteria. If the search is to look for patients whose heart rate

drops by more than 20% within 1 hour, patients with fewer than 2 heart rate samples

should never be considered as potential hits because a change in heart rate is only

meaningful if there are more than 1 sample of heart rate data.

57

Table 3.5: Schema of the pidSampleCount matrix. The first column of the matrix
holds the list of pids and each column from the second column onwards holds the
list of the sample counts of an item for the corresponding patients in column 1. The
columns were arranged according to the mappings specified in columnMappings. The
rows in pidIndices are sorted by pid in ascending order.

pid T cvp . . . dopaminedrip
.

123 26 20 . 0
127 50 33 . 1
133 6 5 . 0

.

The data schema for pidSampleCount is shown in Table 3.5. The first column of

pidSampleCount holds the list of pids in pidCarevue. Each column from the second

column onwards holds the list of the sample counts of an item for the corresponding

patients in column 1. For example, one knows that there are 20 samples of CVP

for patient record with pid 123 since the third column in the row with pid 123 holds

a number 20 in Table 3.5. The columns were arranged according to the mappings

specified in columnMappings. For each searchable pid, there is a row of entry in the

matrix. The rows in pidIndices are sorted by pid in ascending order.

c) pidGradientStat

pidGradientStat is a 3-dimensional matrix that stores precomputed values to facilitate

searches for temporal queries. pidGradientStat can be thought of as a stack of six

2-dimensional matrices with the same dimensions and schema as pidSampleCount but

storing different information. The values are stored to help screen out patient records

that will not satisfy a given trend query. The types of values stored in the 6 matrices

are listed in Table 3.6, in the order in which they were stacked.

Figure 3-1 shows an example of how the 6 value types stored in pidGradientStat

can be derived from a series of sample values of an item in a patient record. In the

example, the longest interval length (dTmax) is 8 while the shortest interval length

(dTmin) is 1. The most positive change in CVP values occured from T = 1 to T = 5

58

Table 3.6: Description of values stored in each of the six 2-dimensional matrices in
pidGradientStat.

Stack
Number

Value
Type

Description

1 dXmin the most negative change (in regular units) in measurement
level of an item in a patient record

2 dXmax the most positive change (in regular units) in measurement
level of an item in a patient record

3 dTmin the minimum interval length (in units of 5-minute intervals)
over which a change in value can be calculated for an item
in a patient record

4 dTmax the maximum interval length (in units of 5-minute intervals)
over which a change in value can be calculated for an item
in a patient record

5 dPmin the most negative change (in percentage) in measurement
level of an item in a patient record

6 dPmax the most positive change (in percentage) in measurement
level of an item in a patient record

Figure 3-1: Example showing how 6 value types stored in pidGradientStat are derived.

59

representing dXmax = 33 − 27 = 6 and dPmax = 33−27
27

= 22.22%. The most negative

change in CVP values occured from T = 5 to T = 8 representing dXmin = 29− 33 =

−4 and dPmax = 29−33
33

= −12.12%.

3.4.3 Input/Output Data Structures

The MIMIC II search engine requires as input 2 strings of characters, one specifying

the demographic criteria and the other specifying the time series search criteria. The

search engine returns the search results as an array of search hit structures as will be

explained in this section.

a) Demographic Query String

An example of a character string specifying a set of demographic criteria is given

below:

[[age 50 70 & sex 1 1] | ∼[pid 100 nan]]

The above query searches for male patients with ages between 50 AND ‘&’ 70

years old (inclusive) OR ‘|’ (patients with pid NOT ‘∼’ greater than or equal to 100.

Each demographic query string is required to satisfy the following constraints:

• A demographic query string is made up of a set of basic demographic criteria

joined together by binary logical operators & (and) and | (or) or the unary

negation operator ∼.

• A basic demographic criterion (eg. age 50 70) consists of 3 components: a

property (age, sex or pid), a lower bound and an upper bound. For sex, male

is represented as 1 and female as 2.

• For each basic demographic criterion, the search engine will return patient

records whose property values lie within the lower bound and the upper bound.

For example, given the criterion age 50 70, the search engine will return patients

whose age ≥ 50 and age ≤ 70.

60

• For the gender criterion, the upper bound and the lower bound are required

to be identical. For example, it is invalid to specify sex 1 2 as a demographic

criterion. The overhead of an extra integer in specifying the gender criterion

‘sex 1 1’ is to allow the query parsing algorithm to handle the gender criterion

as a normal demographic criterion.

• Either the upper bound or the lower bound in a demographic criterion can be

specified as NaN . If a bound is specified as NaN , the constraint for the bound

is relaxed. For example, given the criterion age 50 NaN , the search engine will

return patients whose age ≥ 50.

• Each binary logical operator requires 2 arguments, each of which could be a

basic demographic criterion or a set of demographic criteria joined together by

logical operators. A pair of square brackets is required to specify the scope for

each binary logical operator.

• Any subset of a demographic query string can be negated using ∼, the negation

operator. A pair of square brackets is required to specify the scope over which

the ∼ operator is to be applied.

b) Time Series Query String

For a time series query, the search engine identifies not only the patient records that

satisfy the criteria but also the time points at which the criteria are satisfied.

The structure of a time series query string is very similar to that of a demographic

query string. An example of a character string specifying a set of time series criteria

is given below:

(heartrate 120 NaN NaN NaN 0 & artbpmean NaN -20 NaN 6 1)

The above query searches for periods in patient records where heart rate equalled

or exceeded 120 beats per minute and mean arterial blood pressure dropped by 20%

or more within intervals of less than 6 hours.

Each time series query string is required to satisfy the following constraints:

61

• A time series query string is made up of a set of basic time series criteria joined

together by binary logical operators & (and) and | (or) or the unary negation

operator ∼.

• Each basic time series criterion consists of 6 components. However, there are

3 different types of basic time series criteria which are distinguishable by the

content of the components.

1. Threshold search criterion: The schema of a threshold search criterion is

as follows:

item valuemin valuemax NaN NaN 0.

Item is a searchable item the complete list of which is available in Appendix

A. V aluemin and valuemax are the lower and upper bounds for the item

of interest. The last 3 arguments in the query string, NaN , NaN and

0 in a threshold search criterion are placeholders that allows the query

parsing algorithm parse a threshold search criterion in the same way as a

gradient search criterion. Hence, given the criterion ‘heartrate 120 NaN

NaN NaN 0 ’, the search engine will identify patient records with samples

of heart rate ≥ 120 and the time period during which the criterion was

satisfied.

2. Gradient search criterion (by value): The schema of a gradient search

criterion (by value) is as follows:

item ∆valuemin ∆valuemax ∆Tmin ∆Tmax 0.

Item is a searchable item as before. ∆valuemin and ∆valuemax are the

lower and upper bounds for the change in values in item of interest whereas

∆Tmin and ∆Tmax are the smallest and largest time intervals (in hours) for

which the change in values should be calculated. For example, given the

criterion‘ artbpmean NaN -20 NaN 6 0 ’, the search engine will identify

time periods of less than 6 hours in which the mean arterial blood pressure

dropped by more than 20 mmHg.

62

Figure 3-2: Bounds on the rate of change of X for a gradient search criterion: ‘X
∆Xmin ∆Xmax ∆Tmin ∆Tmax 0’.

Figure 3-2 provides a graphical illustration of the set of slopes M that is

detected by a gradient search with the criterion: ‘X ∆Xmin ∆Xmax ∆Tmin

∆Tmax 0’. As shown in the figure,

M = M1 ∪ M2

where M1 = gradients bounded between L1 = ∆Xmax

∆Tmin
and L2 = ∆Xmax

∆Tmax
and

M2 = gradients bounded between L3 = ∆Xmin

∆Tmin
and L4 = ∆Xmin

∆Tmax

3. Gradient search criterion (by percent): The schema of a gradient search

criterion (by percent) is as follows:

item ∆valuemin ∆valuemax ∆Tmin ∆Tmax 1.

The only difference between this criterion and the previous one is that the

∆valuemin and ∆valuemax are interpreted as the lower and upper bounds

of percentage changes in item values and the final argument (flag) is set

to 1. For example, given the criterion ‘artbpsys -50 -90 1 6 1 ’, the search

63

engine will identify time periods of less than or equal to 6 hours, but greater

than 1 hour during which the systolic arterial blood pressure dropped by

at least 50% but not more than than 90%.

• Binary logical operators, & and |, and the unary negation operator ∼ can be

used in a time series query string in the same way as a demographic query

string. However, in a time series query string a pair of parentheses (instead of

square brackets) is required to specify the scope of the operators.

c) Search Hit Structure

Table 3.7 shows the schema of a search hit structure. The structure consists of 4

attributes:

• Pid specifies the patient identification number.

• Start specifies the starting time of the patient record in MATLAB serial date

format.

• Onset contains a set of time points (in units of 5-minute intervals from the

starting time) that mark the beginning points of the periods during which the

time series search criteria are satisfied.

• Offset contains a set of time points (in units of 5-minute intervals from the

starting time) that mark the ending points of the periods during which the

time series search criteria are satisfied.

If only the demographic criteria are specified, the start, onset and offset attributes

in the search hit structure are all filled with the special value NaN .

3.5 Algorithm Design

Figure 3-3 presents the top-level flow chart for the MIMIC II search engine. As shown

in the figure, the search engine processes each query in 3 major steps:

64

Figure 3-3: Flow chart for the MIMIC II search engine.

65

Table 3.7: Data schema of a search hit structure.

Attribute Description Example
pid patient identification number 123
start starting time of patient record (in MATLAB serial

time unit)
731065.791666667

onset a set of time points (in units of 5-minute intervals
from start) marking the beginning of periods dur-
ing which time series search criteria are satisfied

[1 33 55]

offset a set of time points (in units of 5-minute intervals
from start) marking the end of the periods during
which time series search criteria are satisfied

[5 34 60]

1. Query Parsing,

2. Data Screening, and

3. Time Series Search.

The program takes as input 2 query strings: one specifying the demographic

criteria and the other specifying the time series search criteria. The query strings are

parsed into internal data structures that specify the steps required to fulfill the given

query. The query parsing algorithm is described in Section 3.5.1.

After parsing the search criteria, the program proceeds to narrow its search space

by screening out records that could not meet the criteria to form potential hit lists.

The program generates a potential hit list based on the demographic criteria and

another potential hit list based on the time series criteria. The data screening algo-

rithms are described in Section 3.5.2. The 2 potential hit lists are then intersected to

form a single potential hit list for the given query.

The search program then iterates through each patient record in the potential hit

list to determine the time points at which the individual search criteria were met.

For each hit, i.e. a patient record that contains at least a period of time during which

the individual search criteria were met, the information regarding the hit is stored in

a search hit structure. Finally, the search engine terminates by returning its results

in an array of search hit structures.

66

3.5.1 Query Parsing Algorithm

Figure 3-4 provides a graphical illustration of how a demographic query string is

converted by the query parsing algorithm into internal query specification structures.

There are 4 query specification structures which together specify the steps to be taken

by the search engine to satisfy the query and the parameters required for each step:

Figure 3-4: Graphical illustration of query parsing. The demographic query string:
’[[age 50 70 & sex 1 1] | ∼[pid 100 nan]]’ is converted into 4 internal query specification
structures: Criteria, Joins, Negations and Steps.

• The Criteria matrix holds the set of basic criteria in a query string. The

structure of the Criteria matrix for a demographic query string is different

from that for a time series query string due to the difference in the number

of components required to specify a basic criterion in the two different query

strings. The Criteria matrix of a demographic query string holds 3 components

whereas that of a time series query string holds 6 components.

• The Joins matrix holds the information required to execute the binary logical

operations (& and |) as specified in a query string.

• The Negations matrix holds the information required to execute the unary nega-

tion operation (∼) as specified in a query string.

67

• The Steps array specifies the sequence of steps required to carry out the search

specified in a query string.

The structures for the Joins, Negations and Steps matrices are the same for both

demographic query strings and time series query strings.

The same query parsing algorithm is used to parse both demographic query strings

and time series query strings. Figure 3-5 shows the flow chart of the query parsing

algorithm used to parse both types of query strings. Query parsing is carried out in

the following steps:

1. Initialize Criteria, Joins, Negations and Steps to empty vectors and matrices.

Initialize 2 empty stacks: Stack1, Stack2. Initialize internal variables: i = j =

k = 0.

2. Break a query string into components: operators ‘&, |,∼’, criteria, and scope

specifiers ‘() []’.

3. For each component of the query string, take the following action:

• If the component is an operator, push it to the top of Stack1.

• If the component is a valid basic criterion, add it to Criteria; increment i

by 1; push ‘Ci’ to the top of Stack2 and add ‘Ci’ to Steps.

• If the component is an end scope specifier ‘) or]’, take the following action:

(a) Pop (remove from top of Stack) the top operator (Op) from Stack1.

(b) If Op is a binary operator ‘& or |’, pop 2 items P1, P2 from the top

of Stack2 ; add [‘Op’,‘P1’,‘P2’] to Joins ; increment j by 1; push ‘Jj ’ to

the top of Stack2 and add ‘Jj ’ to Steps.

(c) If Op is a unary operator ‘∼’, pop 1 item P1 from the top of Stack2 ;

add [‘Op’,‘P1’] to Negations ; increment k by 1; push ‘Nk’ to the top

of Stack2 and add ‘Nk’ to Steps.

68

Figure 3-5: Flow chart of the query parsing algorithm.

69

3.5.2 Data Screening Algorithms

The primary purpose of data screening is to reduce the number of records for which

the search engine needs to search for time series criteria because time series searches

involve intensive computation that can slow down the performance of the search

engine.

Patient records are screened by demographic criteria if a demographic query string

is specified for a search. Data screening by demographic criteria is performed as

follows:

• For each basic demographic criterion, a potential hit list that contains patient

records that satisfy the criterion is generated.

• For each & operator in the query string, a set union operation is applied to the

2 potential hit lists generated for the 2 arguments of the operator.

• For each | operator in the query string, a set intersection operation is applied

to the 2 potential hit lists generated for the 2 arguments of the operator.

• For each ∼ operator in the query string, the potential hit list generated for its

argument is subtracted from the set of all pids to form a new potential hit list.

Patient records are also screened based on time series search criteria. However,

data screening for time series search criteria is complicated by the ∼ operator. The &

and | operators in a time series query string can be handled in the same way as in a

demographic query string for data screening. However, the ∼ operator in a time series

query string cannot be handled in the same way as in a demographic query string

because the result of applying the ∼ operator to a potential hit list and that of not

applying the ∼ operator to the list are not mutually exclusive. For example, assuming

that patient record 123 is a potential hit for the query searching for patients with

heart rate greater than 120 beats per minute, 123 cannot be removed as a potential

hit for the query searching for patients with heart rate not greater than 120 beats per

minute because patient 123 may in fact contain heart rate samples with fewer than

70

120 beats per minute. Therefore, different data screening strategies were implemented

to handle query strings with and without a ∼ operator.

If a time series query string that does not contain any ∼ operator, a potential hit

list for the query string is generated in the following steps:

• For each threshold search criterion, only patients that contain at least one sam-

ple that meets the criterion is included in the potential hit list for that criterion.

• To find the potential hit list for each gradient search criterion, first find the

misses (patient records that do not meet the criterion) using the following 4

conditions:

dTmax < ∆Tmin

dTmin < ∆Tmax

dXmax < ∆Xmin(in sample unit) or dPmax < ∆Xmin(in percentage)

dXmin < ∆Xmax(in sample unit) or dPmin < ∆Xmax(in percentage)

where dTmax, dTmin, dXmax, dXmin, dPmax, and dPmin are values stored in pid-

GradientStat for the item in the criterion and ∆Tmin, ∆Tmax, ∆Xmin, and ∆Xmax

are constraint values specified in the gradient search criterion. All patient

records identified as misses are then eliminated from the set of all searchable

patient records to get the potential hit list.

• Set union and set intersection operations are then performed on pairs of poten-

tial hit lists as specified by the & and | operators in the time series search string

to get the final potential hit list.

For a time series query string that contains at least a ∼ operator, the following

steps are performed to get the potential hit list:

• For each threshold search criterion, only patients with at least 1 sample of

the item specified in the criterion are included in the potential hit list for the

criterion.

71

• For each gradient search criterion, only patients with at least 2 samples of the

item in the criterion are included in the potential hit list for the criterion.

• Set union and set intersection operations are then performed on pairs of poten-

tial hit lists as specified by the & and | operators in the time series search string

to get the final potential hit list.

3.5.3 Time Series Search Algorithms

Figure 3-6: Steps of a time series search on a single patient record.

The goal of a time series search on a patient record is to identify periods of time

in the patient record where the time series criteria specified in a query string are

satisfied. Figure 3-6 shows the 3 steps carried out for a time series search on a single

patient record:

1. For each basic time series criterion (either a threshold search or a gradient

search), construct a time line of evenly sampled boolean values, where the 1’s

in the time line indicate the sample values of the item specified in the criterion at

those time points satisfy the given criterion. It is worth noting that all boolean

time lines constructed for a single patient are evenly sampled and identical in

length to ensure logical operators (& and |) can be applied directly to join

72

together a pair of boolean time lines constructed for different searchable items

belonging to the same patient. The length of a boolean time line for a patient

record is the the observed length of the patient record stored in the third column

of the pidTimeLine matrix.

2. Apply logical operators, &, |, and ∼, to the boolean time lines constructed in the

previous step. The operators are applied to the time lines in the order specified

in the time series query string to get the final boolean time line that identifies

time points where all the criteria specified in the query string are satisfied.

3. If the final boolean time line contains at least a single 1, the patient record is

saved in a search hit structure with the time line for the patient being converted

from the evenly sampled boolean string representation to the onset, offset points

representation.

a) Threshold Search

0 5 10 15 20
0

20

40

60

80

100

T (# 5−minute intervals from start)

he
ar

t r
at

e
(b

pm
)

Heart rate samples for patient record P

0 5 10 15 20
0

0.5

1

T (# 5−minute intervals from start)

B
oo

le
an

 V
al

ue
 [0

,1
]

Boolean time line for the threshold search ’heart rate ≥ 90’ on patient record P

threshold, X
min

 = 90bpm

Figure 3-7: Example of a threshold search with Xmin = 90bpm.

Figure 3-7 illustrates an example of a threshold search of ‘heartrate ≥ 90 beats

73

per minute’ for patient record P. The threshold search is carried out as follows:

1. Assuming that the observed length of P is 20 according to the pidTimeLine

matrix, a boolean time line of length 20 is constructed with all values initialized

with 0’s.

2. For each sample value in P that satisfies the criterion, the corresponding boolean

value in the boolean time line is set to 1.

b) Gradient Search

A gradient search is carried out in the following 5 steps:

1. Compute ∆X, a matrix that contains all possible time-oriented changes in sam-

ple values and ∆T, a matrix that contains all possible time intervals between

sample values.

2. Find a set of two dimensional index pairs in ∆X, I∆x
ij , where ∆Xmin ≤ ∆x ≤

∆Xmax and a set of index pairs in ∆T, I∆t
ij where ∆Tmin ≤ ∆t ≤ ∆Tmax. Find

the intersection of the two sets of index pairs to obtain Ihits
ij , which contains

the set of index pairs that mark the periods during which the gradient search

criterion is satisfied.

3. If Ihits
ij contains index pairs in which multiple row indices are paired with the

same column index, retain only the index pair with the smallest row index.

4. If Ihits
ij contains index pairs in which multiple column indices are paired with

the same row index, retain only the index pair with the highest column index.

5. Construct a boolean time line based on the remaining indices.

The gradient search algorithm is explained below with a step by step gradient

search with criterion: ‘heartrate -20 0 1
12

3
4

0’ on an example patient P. The criterion

searches for episodes in P where the change in heart rate values (∆x) falls between -20

and 0 within time intervals (∆t) 1
12

hour and 3
4
hour. Hence, according to the criterion,

74

∆Xmin = −20, ∆Xmax = 0, ∆Tmin = 1
12

∗ 12 = 1, and ∆Tmax = 3
4
∗ 12 = 9. It is

worth noting that although ∆Tmin and ∆Tmax were specified in hours at input, the

values were converted into units of 5-minute intervals used for internal computation.

The heart rate samples X and the corresponding time stamps T of P are provided

in Table 3.8

Table 3.8: Heart rate samples X and the corresponding time stamps T of an example
patient record P.

T (# 5-minute intervals from start) X (heart rate samples in bpm)
3 82
5 92
7 95
8 93
9 83
15 94

Step 1: Given X =
(

82 92 95 93 83
)

, ∆X can be computed as follows:

1. Form square matrices, shiftMat =

82 92 95 93 83 94

82 92 95 93 83 94

82 92 95 93 83 94

82 92 95 93 83 94

82 92 95 93 83 94

82 92 95 93 83 94

by replicating

X and baseMat =

82 82 82 82 82 82

92 92 92 92 92 92

95 95 95 95 95 95

93 93 93 93 93 93

83 83 83 83 83 83

94 94 94 94 94 94

by transposing shiftMat. To

compute ∆X, each row of baseMat can be thought of as a starting point and

each row of shiftMat can be thought of as the end points with respect to the

75

corresponding starting point in baseMat.

2. Compute shiftMat − baseMat =

0 10 13 11 1 12

−10 0 −3 −1 9 2

−13 −3 0 −2 −12 −1

−11 −1 2 0 −10 1

−1 9 12 10 0 11

−12 −2 1 −1 −11 0

.

3. Since all entries of the main diagonal of shiftMat − baseMat are always 0

and the lower triangular part of shiftMat − baseMat below the main di-

agonal contains the time-reversed changes in X, only the upper triangular

part of shiftMat − baseMat above the main diagonal contains all possible

time-oriented changes in X, i.e. ∆X1. Hence, for the X in the example,

∆X =

NaN 10 13 11 1 12

NaN NaN 3 1 −9 2

NaN NaN NaN −2 −12 −1

NaN NaN NaN NaN −10 1

NaN NaN NaN NaN NaN 11

NaN NaN NaN NaN NaN NaN

.

In general, for any set of time oriented sample values X =
(

x1 x2 . . . xN

)

,

∆X =

NaN x2 − x1 . . . xN − x1

NaN NaN . . . xN − x2

. .

NaN NaN . . . NaN

1if ∆Xmin, and ∆Xmax in gradient search criteria were specified in percentage, ∆X =
(shiftMat − baseMat)./baseMat, with the main diagonal and the lower triangular part of the
matrix filled with the special value NaN .

76

For the given T =
(

3 5 7 8 9
)

in the example,

∆T =

NaN 2 4 5 6 12

NaN NaN 2 3 4 10

NaN NaN NaN 1 2 8

NaN NaN NaN NaN 1 7

NaN NaN NaN NaN NaN 6

NaN NaN NaN NaN NaN NaN

Step 2: Finding index pairs of ∆X for which −20 ≤ ∆x ≤ 0 yields

I∆x
ij =

(

(2, 5)T , (3, 4)T , (3, 5)T , (3, 6)T , (4, 5)T

)

where for each (m, n)T in, I∆x
ij , m = row index, and n = column index . By con-

vention, rows in a matrix are indexed from top to bottom with the top row indexed

as 1 and columns in a matrix are indexed from left to right with the left-most row

indexed as 1.

Similarly, finding index pairs of ∆T where 0 ≤ ∆t ≤ 10 yields

I∆t
ij = ((1, 2)T , (1, 3)T , (1, 4)T , (1, 5)T , (2, 3)T , (2, 4)T , (2, 5)T , (3, 4)T , (3, 5)T , (3, 6)T , (4, 5)T , (4, 6)T , (5, 6)T).

Finding the intersection of I∆x
ij and I∆t

ij yields

Ihits
ij = I∆x

ij ∩ I∆t
ij =

(

(2, 5)T , (3, 4)T , (3, 5)T , (3, 6)T , (4, 5)T

)

Since ∆Xmin ≤ ∆xij ≤ ∆Xmax and ∆Tmin ≤ ∆tij ≤ ∆Tmax for all indices (i, j)

in Ihits
ij , all changes in sample values from xi to xj within time periods ti to tj satisfy

the constraint specified by the gradient search criterion. Hence, the gradient search

criterion is satisfied for all periods from ti to tj for all pairs of (i, j) in Ihits
ij . To

represent the fact that the gradient search criterion was satisfied during the period

from ti to tj on a boolean time line, one simply has to set all boolean values from ti

to tj to 1. However, periods from ti to tj for all pairs of (i, j) in Ihits
ij may contain

77

overlaps. Since converting overlapped periods into the boolean representation requires

unnecessary computation, steps 3 and 4 of the gradient search algorithm (detailed

below) are executed to minimize the duration of overlapped periods.

From each pair of indices, (i, j) in Ihits
ij , one can derive a beginning time stamp

ti and an ending time stamp tj that define a period [ti : tj] during which a gradient

search criterion is satisfied. Hence, i essentially defines the starting time stamp and

j defines the ending time stamp of a period on a time line.

Step 3: Pairs of indices (i, j) in Ihits
ij with different i and identical j define periods

with different starting time stamps but an identical ending time stamp. For Ihits
ij

calculated in Step 2, three index pairs (2,5), (3,5) and (4,5) have a common column

index j = 5. Since [t4 : t5] ⊂ [t3 : t5] ⊂ [t2 : t5] on a time line, once the boolean

values in the period [t2 : t5] are set to 1, the boolean values in the periods [t4 :

t5], and [t3 : t5] are set to 1 as well. In general, if Ihits
ij contains index pairs in which

multiple row indices i are paired with the same column index j, only the index pair

with the lowest row index i (representing the period with the earliest starting time

stamp) should be retained. In the example, the index pairs (3,5) and (4,5) contain

redundant information and should be discarded from Ihits
ij . After completing step 3,

Ihits
ij =

(

(2, 5), (3, 4), (3, 6)
)

.

Step 4: Pairs of indices (i, j) in Ihits
ij with identical i but different j define periods

with an identical starting time stamp but different ending time stamps. After Step

3, Ihits
ij contains 2 index pairs (3,4) and (3,6) with a common row index i = 3. Since

[t3 : t4] ⊂ [t3 : t6] on a time line, once the boolean values in the period [t3 : t6] are set

to 1, the boolean values in the period [t3 : t4] are set to 1 as well. In general, if Ihits
ij

contains index pairs in which multiple column indices j are paired with an identical

row index i, only the index pair with the highest column index j (representing the

period with the latest ending time stamp) should be retained. In the example, the

index pair (3,4) contains redundant information and should be discarded from Ihits
ij .

After completing step 4, Ihits
ij =

(

(2, 5), (3, 6)
)

.

78

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T (# of 5−minute intervals from start)

Bo
ole

an
 V

alu
e

[0
,1

]

Boolean time line constructed with I = ((2,5),(3,6))

I = ((2,5),(3,6)) → Boolean([T
2
:T

5
],[T

3
:T

6
]) = 1 → Boolean([5:9],[7:15]) = 1

Figure 3-8: Graphical Illustration of how a boolean time line is constructed from Ihits
ij .

Step 5: Figure 3-8 provides a graphical illustration of how a boolean time line is

constructed from Ihits
ij in step 4. In the above example, it is assumed that the observed

length of P is recorded as 20 in the pidTimeLine matrix. Hence, a boolean time line

of length 20 is allocated with all its boolean values initialized to 0. Since t2 = 5, t3 =

7, t5 = 9, and t6 = 15, the boolean values for the periods [5 : 9], and [7 : 15] were set

to 1. Since the periods [5 : 9], and [7 : 15] contain an overlapping period [7 : 9], in

Figure 3-8, it appears as though there was a single period [5 : 15] during which the

gradient search criterion was satisfied.

c) From a Boolean String to a Set of Onset, Offset Points

Figure 3-9 provides a graphical illustration of how a boolean time line can be converted

into Ton, Toff representations. As shown in the figure, Ton stores a set of time stamps

ti that mark the beginning of a series of evenly sampled 1’s on the boolean time line.

For each ti in Ton, there is a corresponding ti in Toff that marks the end of the period

that fulfils the time series search criteria.

79

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

T (# 5−minute intervals from start)

Bo
ole

an
 va

lue
s [

0,
1]

Boolean time line representation → T
on

, T
off

 representation

T
on

 = [3, 7, 9], T
off

 = [6, 8, 13]

Figure 3-9: Graphical Illustration of how a boolean time line is converted into Ton, Toff

representation.

3.6 Interface Design

The web-based interface for the MIMIC II search engine was jointly designed by Dr.

Gari Clifford, Andrew Hung and Tin Htet Kyaw and was implemented by Andrew

Hung.

3.6.1 Design Objectives

The interface for the search engine was designed with the following primary objectives:

1. The interface was designed to be fully compatible with the search engine. To

ensure compatibility, the interface was implemented using MATLAB and MAT-

LAB WebServer.

2. The interface was designed to be sufficiently user-friendly for clinicians without

extensive knowledge about databases and query languages to use. Therefore,

the interface incorporates many intuitive and user-friendly GUI (Graphical User

Interface) features such as buttons, drop-down boxes and checkboxes to mini-

mize the need for a user to type in their instructions.

80

3. The interface was designed to provide enough flexibility for sophisticated users

with extensive database knowledge to specify complex queries composed of nu-

merous basic query criteria joined together by logical operators.

4. The interface was designed to be extensively portable with minimum require-

ment for installation and use. The web-based implementation of the database

allows users to access the search engine from any computer (a PC or a Mac

running any standard operating systems such as Linux, Mac OS, or Windows)

with an html-compatible web browser. The web-based interface also eliminates

the need to install MATLAB in order to run the search engine.

5. The interface was designed to provide an automatic method to visualize the

search results returned by the search engine without the use of a graphing

program.

6. The interface was designed to serve as a bridge between the search engine and

the Annotation Station [8], an open-source software system for visualizing and

annotating clinical information in massive biomedical databases. The interface

was designed to have the ability to convert the search results returned by the

search engine into Annotation Station-compatible XML annotations. Since the

comprehensive set of clinical information available for a patient can be loaded

and visualized on the Annotation Station, having the ability to load the search

engine’s results as annotations enables the search results to be verified for cor-

rectness on the Annotation Station. Furthermore, researchers or clinicians using

the Annotation Station to investigate patient records can use the search engine

generated annotations to focus their investigations of the patient records.

3.6.2 Implementation

Figure 3-10 provides the flow chart of the web-based interface for the search engine.

The flow of the program is explained below with a step-by-step execution of a sample

query:

81

Figure 3-10: Flow chart of the web-based interface for the MIMIC II search engine.
Grey boxes indicate html pages, black boxes MATLAB routines which collect param-
eters from the html pages and parse them into search-engine compatible query strings
(gosearch1.m), execute the query using the search engine (gosearch2.m), plot trend
graphs (gosearch3.m) or generate annotations in XML format (gosearch4.m). White
boxes indicate relevant files: data(.mat), XML annotations(.xml) or figures(.png).

82

Figure 3-11: Step 1 of the web-based interface for the MIMIC II search engine.
All entries in the page are initialized with NaN when the screen is launched. The
demographic section allows demographic constraints to be specified for a search. The
time series section allows up to 6 time series search criteria to be specified. The time
series criteria are jointed together by the & operator. Clicking ‘Step 2 >’ passes the
input from the page to gosearch1.m which in turn populates the html page for Step
2.

1. Figure 3-11 provides a screen shot of Step 1 of the web-based interface program

for the search engine. All input boxes in the page are initialized with NaN

at launch time. The row of input boxes on the web page in the demographic

section allows a user to specify the constraints for a demographic query string.

In Figure 3-11, the demographic constraints are set to find male patients with

ages between 70 and 80.

In the time series section of the page, there are 6 rows of inputs available to

allow a user to specify up to 6 time series search criteria to compose a time series

search string (discussed in Section 3.4.3.b). All the time series criteria specified

are combined with the & operator. The dropdown boxes at the beginning of

each row of input are filled with searchable items to allow a user to easily select

an item to search. The checkbox at the end of a row of input needs to be checked

83

if the values specified for dXmin and dXmax are to be interpreted as percentage

values for a gradient search criterion. In Figure 3-11, only a single time series

search criterion was set to find episodes in patient records where the heart rate

dropped by at least 10 beats per minute within intervals that were between 30

and 60 minutes in length.

Once a user completes his or her specification of the demographic criteria and

the time series search criteria by pressing the ‘Step 2 >’ button on the page, the

MATLAB routine gosearch1.m is called which formats the input data from the

page into search-engine compatible query strings and populate the html page

for Step 2 wtih the query strings. When gosearch1.m is complete, the browser

is redirected to the second page of the interface where the user-specified criteria

are displayed as a demographic query string and a time series query string as

required by the search engine.

Figure 3-12: Step 2 of the web-based interface for the MIMIC II search engine. The
demographic criteria and time series search criteria specified in Step 1 are formatted
into the MIMIC II search engine compatible demographic query string and time
series query string. A user is allowed to modify the query strings to specify more
sophisticated queries. The TIMEID is a unique identifier generated for a query to
facilitate the storage and identification of results generated for the query. Clicking
‘Search >’ passes the demographic and time series query strings to gosearch2.m which
in turn passes them to mimic2search.m to execute the query.

84

2. Figure 3-12 provides a screen shot of Step 2 in the interface program. In this

step, the demographic criteria and the time series criteria specified in Step

1 are formatted into search engine compatible demographic query string and

time series query string which are displayed in modifiable text fields on the

page. A user is allowed to modify or augment the query strings to specify more

sophisticated queries. A unique TIMEID is also generated for the query to

facilitate the storage and identification of results generated for the query. A

user completes Step 2 by pressing the ’Search >’ button at which point the

interface program (gosearch2.m) issues a search to the MIMIC II search engine

(mimic2search.m) providing as arguments the demographic query string and

the time series query string collected from Step 2. There is also a link at the

top of the page that allows a user to return to Step 1.

Figure 3-13: Step 3 of the web-based interface for the MIMIC II search engine. The
search results returned by the MIMIC II search engine, together with the time it took
for the search, are displayed on this page. The page also provides 3 options: 1) to
generate plots of a patient record, 2) to save the search result for a particular record
as an annotation and 3) to save all search results as annotations.

3. Figure 3-13 provides a screen shot of Step 3 in the interface program. Specifi-

cally, the figure shows a snapshot of the search results returned by the search

85

engine for the search criteria specified in Figure 3-11. The number of cases

(patient records) that match the criteria, and the time it took for the search

engine to perform the search are clearly displayed. Furthermore, all the search

results are sorted into a table with 4 columns displaying for each patient record

the pid, the start time, the onset time and offset time (in minutes from the start

time). The pids of all patient records returned by the search engine are also

listed in the dropdown box near the top of the page. Just as in Step 2, there is

also a link at the top of the page that allows a user to return to Step 1 to begin

a new search.

There are 3 options provided for a user to proceed from Step 3:

Figure 3-14: Screen shot of a trend plot generated for a patient record returned as
a hit by the MIMIC II search engine. The plots are generated by a function call to
gosearch4.m. In the figure, the entire trend record of heart rate is displayed. The
onset time stamps are marked with dashed blue vertical lines whereas the offset time
stamps are marked with solid cyan vertical lines.

(a) As the first option, a user can generate plots to visualize the search results

returned for the patient record with the pid selected in the drop-down box.

The plots are generated by a function call to gosearch4.m. An example of

such a plot is shown in Figure 3-14. In the figure, the entire trend record

of heart rate is displayed. The onset time stamps are marked with dashed

blue vertical lines whereas the offset time stamps are marked with solid

86

cyan vertical lines. Only 1 plot for the heart rate trend was generated

because there was only a single time series criterion defined based on the

heart rate. If there were multiple time series criteria specified in a query,

there would be multiple plots generated: one for each criterion. A user

can also save the search result of the patient record displayed on the page

as an annotation by pressing the ‘Save Annotation >’ button at the top of

the page. If a user chooses this option, an XML annotation of the patient

record will be generated and the user will be redirected to the directory

where the annotation is stored as discussed in b).

Figure 3-15: A sample annotation generated from a hit returned by the MIMIC II
search engine.

(b) As the second option, a user can also save the search results returned for

the patient record with the pid selected in the drop-down box. If a user

selects to proceed with this option, the MATLAB routine gosearch4.m is

called to convert the search result into an XML annotation [8] in a special

directory on the server running the MIMIC II search engine. A sample

87

XML annotation is shown in Figure 3-15. A zip file containing the XML

annotation is also created in the same directory. The directory name was

generated based on the time stamp at which the query was executed. After

the annotation file and the zip file are successfully generated, the user is

redirected to the directory (as shown in Figure 3-16) so that he or she can

download the files to a local storage disk.

Figure 3-16: Screen shot of the content of a directory where the search engine gener-
ated annotations are saved. The XML annotation can be loaded on the Annotation
Station to visualize the search results. The zip file is a compressed archive of all the
annotations in the directory that the user has requested be generated. The directory
name was generated based on the time stamp at which the query was executed.

(c) As the third option, a user can save all patient records returned as hits by

the search engine, each as an XML annotation. If this option is selected,

each patient record returned by the search engine is saved as a separate

XML annotation (Figure 3-15), and stored in the special directory created

to save annotations for the query. A zip file containing all XML annota-

tions is also created in the same directory to facilitate downloading. After

all annotation files and the zip file are successfully created, the user is

redirected to the directory where all those files are stored (Figure 3-16).

88

3.6.3 Strengths and Limitations

Strengths

Based on the experience of using the interface, the implementation of the search

engine interface has the following strengths:

• The interface works seamlessly with the search engine. Yet, the implementation

of the interface is cleanly decoupled from that of the search engine. In fact, there

is only a single function call from the interface to the search engine that links

the 2 systems together.

• The interface not only provides an intuitive way for people without extensive

knowledge about databases or MATLAB to perform time series searches but

also provides flexibility for sophisticated users to execute complex queries.

• The interface is portable: it has been tested on PCs running Windows XP as

well as Linux operating systems.

• The interface provides an easy method to visualize the results returned by the

search engine.

• The interface bridges the gap between the search engine and the Annotation

Station through the generation of XML annotation files.

Limitations

The search engine has also been observed to have the following limitations due to its

dependence on the MATLAB WebServer:

• Canceling or aborting an issued query is not possible in the current implemen-

tation. Once a query is issued to the MATLAB WebServer, there is no way to

terminate it prematurely.

• Overloading the WebServer with multiple requests from various sources is known

to cause the program to crash. This may have been caused by the limited

89

computation resources available on the server. Therefore, one may need to

run the search engine server on a computer with abundant memory and a fast

processor. Alternatively, efficient queuing or parallelizing the searches may also

solve this problem of resource overuse.

• There has been significant memory leakage detected with the MATLAB Web-

Server running overnight under Windows XP to support the search engine in-

terface. Although this may be an operating system specific problem, one can

alternatively explore ways to decouple the dependence of the search engine in-

terface on the MATLAB WebServer.

3.7 Performance, Case Studies and Discussion

The biggest challenge in testing and evaluating the performance of a search engine for

a clinical information database such as MIMIC II lies in the challenge of quantifying

missed detections for time-series searches. For a search engine that performs time

series searches, the following 2 types of missed detections are possible:

• The search engine might detect some episodes or periods in a record during

which the time series criteria were satisfied while missing other episodes during

which the criteria were satisfied. Such a miss is known as an episode miss.

• The search engine might fail to detect all episodes or periods in a record during

which the time series criteria of a query were satisfied and fail to identify the

record as a hit. Such a miss is known as a record miss.

One possible way to find missed detections by a search engine is to manually per-

form the searches on patient records by visually evaluating the plots of sample values

for the records. However, visually evaluating the plot is not only extremely laborious

and time-consuming but also unreliable at uncovering all the missed detection. On

the other hand, an automatic verification algorithm for a search engine requires a pre-

annotated database in which all episodes of hits are identified by machine-readable

90

annotations. Since annotating the MIMIC II database is still an ongoing effort, a com-

prehensive evaluation of the missed detections of the search engine for the MIMIC II

database needs to be deferred until the database is fully annotated.

A summary of the tests conducted to evaluate the performance of the search

engine and the results from those tests are described in Section 3.7.1. Case studies on

a selected set of patient records returned as hits from the tests are then provided in

Section 3.7.2. The limitations of the current search engine are highlighted and then

possible ways of overcoming those limitations are suggested in the case studies.

3.7.1 Performance Tests and Results Summary

Table 3.9 provides a summary of the tests conducted to evaluate the performance

of the search engine on the MIMIC II database. The results returned by the search

engine for the searches listed in Table 3.9 are summarized in Table 3.10.

Speed and Scalability

As described in Section 3.5.1, to conduct a gradient search of an item for a patient

record, the search engine calculates all possible gradient values from the samples

and then find the gradient values that meet the constraint specified in the criterion.

To keep the algorithm simple and to minimize storage overhead, no gradient values

were precomputed. In return for a relatively simple gradient search algorithm with

minimum storage overhead, the algorithm is required to do extensive amount for

computation to perform a gradient search. In fact, the order of growth for the amount

of computation required by the algorithm is O(N2) where, N is the number of sample

values of the item of interest in the patient record. As evidenced in Table 3.10, queries

that include gradient searches on items with relatively high numbers of samples such

as heart rate and mean arterial blood pressure (Cases 4 and 8) take significantly more

time to complete compared to other searches.

The order of growth in the amount of memory required to perform a gradient

search is also O(N2), where N is the number of sample values. Hence, for high

91

Table 3.9: Summary of tests conducted to evaluate the performance of the search
engine on the MIMIC II database.

Test
Case

Search Objective Evidence Searched
Time Series Query

String
1 To find evidence of

metabolic acidosis

pH ≤ 7.2 AND pCO2 ≤ 35 AND

Lactate ≥ 2.5

((ph NaN 7.2 NaN NaN 0 &

paco2 NaN 35 NaN NaN 0) &

lactate 2.5 NaN NaN NaN 0)

2 To find evidence of acute

renal failure

Creatinine ≥ 2 AND

∆Creatinine ≥ 200% within

∆T ≤ 48hours

(creatinine 2 NaN NaN NaN 0

& creatinine 200 NaN NaN 48

1)

3 To find evidence of

multi-organ failure

Creatinine ≥ 1.5 AND

∆Creatinine ≥ 100% within

∆T ≤ 48hours; AND

AST ≥ 40 AND ∆AST ≥ 50% within

∆T ≤ 48hours; AND

ALT ≥ 40 AND ∆AST ≥ 50%

within ∆T ≤ 48hours.

(((((creatinine 1.5 NaN NaN

NaN 0 & creatinine 100 NaN

NaN 48 1) & ast 40 NaN NaN

NaN 0) & ast 50 NaN NaN 48

1) & alt 40 NaN NaN NaN 0)

& alt 50 NaN NaN 48 1)

4 To find evidence of hem-

orrhagic shock

∆HR ≥ 50% AND ∆ABPmean ≤

−20% within ∆T ≤ 6hours

(heartrate 50 NaN NaN 6 1 &

artbpmean NaN -20 NaN 6 1)

5 To find times at which

a vasoconstrictor is

started or increased

significantly

∆Levophed ≥ 100% within ∆T ≤

0.5hour

levophed 100 NaN NaN 0.5 1

6 To find evidence of my-

ocardial infarction

Troponin ≥ 0.1 troponin 0.1 NaN NaN NaN 0

7 To find evidence of intu-

bation (mechanical ven-

tilation onset)

TidalV olumeSet ≥ 0.01 tidalvolumeset 0.01 NaN NaN

NaN 0

8 To find evidence of prob-

able paroxysmal tach-

yarrhythmia

∆HR ≥ 40bpm within ∆T ≤ 1

12
hour heartrate 40 NaN NaN 1

12
0

92

Table 3.10: Summary of Results for tests in Table 3.9.

Test
Case

Search Objective
Search
Time

(seconds)

Number of
Patient
Records

Returned as
Hits

1 To find evidence of metabolic acidosis 1.442 28

2 To find evidence of acute renal failure 0.831 13

3 To find evidence of multi-organ failure 1.472 3

4 To find evidence of hemorrhagic shock 118.921 526

5 To find times at which a vasoconstrictor is

started or increased significantly

0.992 33

6 To find evidence of myocardial infarction 1.052 187

7 To find evidence of intubation (mechanical

ventilation onset)

2.523 1119

8 To find evidence of probable paroxysmal tach-

yarrhythmia

62.910 124

resolution signals with many samples, it may not be possible to perform gradient

searches using the algorithm implemented in the search engine.

To improve the speed of the search engine, methods to precompute, store and

index gradient information efficiently should be explored for faster gradient searches.

To improve the scalability of the gradient search algorithm, algorithms that minimize

the number of gradient computations should be explored.

3.7.2 Case Studies and Discussion

The following case studies are presented to illustrate the strengths and weaknesses

of the search engine on the MIMIC II database. All 3 cases were returned as hits

by the search engine to test cases 1 – 3 in Table 3.9. To evaluate the accuracy of

the search engine in identifying those cases as hits, the patient record for each case

was carefully inspected by investigating relevant clinical information of the patient

(including trend plots, progress reports and discharge summaries) on the Annotation

Station [8] with the help of a clinician.

93

Case Study 1: A Hit to the Search for Metabolic Acidosis

0 20 40 60 80 100 120 140
6.5

7

7.5

T
offset

T
onset

Time (hours from start)

p
H

pH,paCO
2
 and Lactate Trend Plots for Case Study 1 with Superimposed (T

onset
,T

offset
)

0 20 40 60 80 100 120 140
20

40

60

T
offset

T
onset

Time (hours from start)

p
a

C
O

2

0 20 40 60 80 100 120 140
0

10

20

30

T
offset

T
onset

Time (hours from start)

L
a

ct
a

te

pH = 7.2

paCO
2
 = 35

Lactate = 2.5

Figure 3-17: pH, paCO2 and Lactate Trend Plots for Case Study 1.

A patient record (pid = 39) returned as a hit to the search for metabolic acidosis

is presented for this case study. The relevant trend plots for the patient record with

superimposed (Tonset, Toffset) are presented in Figure 3-17. As evident in the trend

plots in Figure 3-17, the search engine successfully detected the single time point at

which all relevant sample values satisfy the criteria for metabolic acidosis (specified

in Table 3.9).

Investigating the trend plots of the patient record on the Annotation Station

(Figure 3-18) shows that the patient indeed suffered from metabolic acidosis near the

end of the record. An examination of the patient’s discharge summary (Appendix

B.1) also confirms the evidence of metabolic acidosis towards the end of the patient’s

stay in the ICU. Therefore, the search engine succeeded in identifying an episode of

metabolic acidosis for this particular patient.

94

Figure 3-18: Relevant Trend Plots for Case Study 1 from the Annotation Station.

95

Case Study 2: A Hit to the Search for Acute Renal Failure

0 50 100 150 200
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (hours from start)

C
re

at
in

in
e

Creatinine trend plot for Case Study 2 with superimposed (T
onset

,T
offset

)

T
offset

T
onset

T
offset

T
onset

Creatinine = 2

T
1

Figure 3-19: Creatinine Trend Plot for Case Study 2.

A patient record (pid = 67) returned as a hit to the search for acute renal failure

is presented for this case study. The creatinine trend plot for the patient record with

superimposed (Tonset, Toffset) is presented in Figure 3-19. As evident in the creatinine

trend plot, the search engine successfully detected 2 time points at which the corre-

sponding creatinine sample values satisfy the criteria for acute renal failure (listed in

Table 3.9). Examining the trend plots of the patient record on the Annotation Sta-

tion (Figure 3-20) and the patient’s discharge summary (Appendix B.2) confirmed

that the patient indeed suffered from acute renal failure towards the end of his stay

in the ICU. Therefore, the search engine was successful at identifying an episode of

acute renal failure for this patient.

Virtual Segmentation of a Physiological Episode: By visually inspecting Fig-

ure 3-19, one could argue that the period from T1 to the end of the record should be

identified as a single period during which the patient suffered from acute renal failure.

The search engine identified the period as 2 separate time points because the search

engine, as it is implemented, does not interpolate any sample values between irreg-

ularly sampled measurements. To avoid such virtual segmentation of physiological

episode, an interpolation scheme needs to be implemented for the search engine.

96

Figure 3-20: Relevant Trend Plots for Case Study 2 from the Annotation Station.

97

Case Study 3: A Hit to the Search for Multi-organ Failure

10 15 20 25 30 35 40 45 50 55
1

2

3

Time (hours from start)

C
re

at
in

in
e

T
offset

T
onset T

offset

T
onset T

offset

T
onset T

offset
T

onset
T

offset
T

onset

Creatinine, ALT and AST trend plots for Case Study 1 with (T
onset

,T
offset

) superimposed

10 15 20 25 30 35 40 45 50 55
0

5000

10000

Time (hours from start)

A
LT

T
offset

T
onset

T
offset

T
onset

T
offset

T
onset

T
offset

T
onset

T
offset

T
onset

10 15 20 25 30 35 40 45 50 55
0

1

2
x 10

4

Time (hours from start)

A
S

T

T
offset

T
onset

T
offset

T
onset

T
offset

T
onset

T
offset

T
onset

T
offset

T
onset

creatinine = 1.5

ALT = 40

AST = 40

Figure 3-21: Creatinine, ALT and AST Trend Plot for Case Study 3.

A patient record (pid = 9320) returned as a hit to the search for multi-organ

failure is presented for this case study. The creatinine, ALT and AST trend plot

for the patient record with superimposed (Tonset, Toffset) is presented in Figure 3-

21. As evident in the trend plots, the search engine successfully detected 5 time

points at which the corresponding sample values satisfy the criteria for multi-organ

failure (listed in Table 3.9). Examining the trend plots of the patient record on the

Annotation Station (Figure 3-22) and the patient’s discharge summary (Appendix

B.3) confirmed that the patient indeed suffered from multiple organ failures due to

cardiogenic shock towards the end of his stay in the ICU. Therefore, the search engine

was successful at identifying an episode of multi-organ failure for this patient.

98

Figure 3-22: Relevant Trend Plots for Case Study 3 from the Annotation Station.

99

Detecting hits when measurements are not sampled synchronously: The

search engine was able to detect multi-organ failure for this patient record because

measurements of creatinine, ALT and AST were sampled at the same time when

available. If the measurements were not sampled at the exact same time, the search

engine would have failed to detect the episode of multi-organ failure for this patient.

However, it is still possible to detect multi-organ failure using the current search

engine implementation when the measurements are not sampled at the same time.

One possible way is to first perform 3 different queries with criteria based on creati-

nine, ALT and AST respectively. For each patient record that is a hit in all 3 queries,

one could generate trend plots for creatinine, ALT and AST with the (Tonset, Toffset)

returned from each query superimposed on the trend plots. Given the trend plots, one

could identify episodes of multi-organ failure based on the visual evidence provided

by the trend plots.

Alternatively, it is also possible to develop algorithms to automatically detect

hits when measurements are not synchronously sampled. The following are a few

suggestions for future implementation:

• The most straightforward method is to implement an algorithm that can effi-

ciently interpolate unevenly sampled measurements.

• Alternatively, one could develop an algorithm to record the ‘near-misses’, in

which the criteria for different items were not satisfied at the exact same time

but within a time window of finite length. Once the ‘near-misses’ are identified,

a set of subjective criteria can be used to categorize those ‘near-misses’ as either

hits or misses.

• The current implementation of the search engine uses a boolean time line to

represent and combine results for time series searches. Hence for the result at

each time stamp could only be either a ‘hit’ or a ‘miss’. As a third alterna-

tive, one could explore using fuzzy-logic [30] instead of binary boolean logic to

represent results for time series searches.

100

Chapter 4

Conclusions and Suggested Future

Work

The first half of this thesis describes the effort in converting the trend and waveform

data from the proprietary Philips format to the open-source WFDB format. The

second half of this thesis describes the design and implementation of a simple search

engine that is capable of performing time series searches on the clinical information

in the Carevue repository in the MIMIC-II database.

This chapter provides a brief summary of the 2 projects described in this thesis

and suggests directions for future work.

4.1 Summary

In Chapter 2, the proprietary data schema for the trend and waveform data, along

with the problems associated with each schema, were described in detail. The data

conversion algorithms developed to solve the problems of the proprietary data schema

and convert the data into the open-source WFDB format were also presented in

this chapter. The remaining problems regarding the trend and waveform data were

discussed and steps to improve the data collection effort were suggested.

Chapter 3 presented the design and implementation of a simple search engine

for time series searches on clinical information using simple algorithms with little

101

storage overhead. The design of the data structures, algorithms and interface for the

search engine was discussed in detail. Results from time series searches to detect

physiological events of clinical interest were presented. Detailed case studies on 3

patient records returned as hits for queries to detect clinically interesting physiological

events were performed to highlight the strengths and limitations of the search engine.

4.2 Suggested Future Work

Data conversion algorithms for future proprietary format: The manufac-

turer has been designing a new and potentially improved proprietary format for trend

and waveform data. Hence, the data conversion algorithms presented in this thesis

need to be modified to convert trend and waveform data in the new proprietary format

into the open-source WFDB format.

Algorithms for the search engine to detect physiological events when mea-

surements are not synchronously sampled: As discussed in the case studies in

Section 3.7.2, the search engine may fail to detect physiological events when clinical

measurements were not synchronously sampled. Some possible methods to overcome

this limitation of the search engine were also presented in Section 3.7.2.

Algorithms to improve the speed and scalability of the search engine: As

presented in Section 3.7.1, the gradient search algorithm in the search engine has

O(N2) growth rate in the number of computation cycles and memory usage, (N is

the number of samples of an item in a patient record). Therefore, to improve the speed

and scalability of the search engine, alternative methods to calculate and search for

gradients need to be explored.

Algorithms to eliminate noise in data: Clinical information in an ICU are prone

to various types of noise such as signal interference, measurement errors and device

malfunctions. The current implementation of the search engine performs searches on

only human-verified measurements and other data that are minimally prone to noise

102

such as lab results and medications. However, the data is still susceptible to random

noises which may lead the search engine to produce false hits. Therefore, in order to

minimize the number of false hits the search engine can produce, it may be necessary

to develop algorithms that can detect and eliminate noise and artifacts in data while

performing searches.

Algorithms to perform time series searches on trend and waveform data:

The bulk of information in a clinical information database is made up of high-

resolution trend and waveform signals. Those trend and waveform signals not only

provide a wealth of information regarding a patient’s physiological state but also

impose significant challenges in computational overhead for a search engine. Further-

more, the trend and waveform signals represent clinical data that are most susceptible

to noise. However, to detect physiological episodes of clinical interest with high reli-

ability, one needs to investigate the evidence found only in the trend and waveform

signals. Therefore, it is necessary to develop algorithms that can perform time series

searches on high-resolution physiological signals to have a complete search engine for

a clinical information database.

Decouple the dependency of the search engine interface on the MATLAB

WebServer: As discussed in Section 3.6.3, the MATLAB WebServer imposes strict

limitations on the functionality of the web-based interface developed for the search

engine. The dependence of the interface on the MATLAB WebServer should be

minimized in order to improve the performance of the interface.

Optimize the search engine performance by implementing the algorithms

in a compiled language: Programs written in MATLAB are interpreted ‘on the

fly’ and thus are considerably slower than those written in compiled languages such

as the C programming language. Hence, to improve the performance of the search

engine, one could implement the search engine in a compiled language.

103

Optimize the search engine performance by parallelizing searches: Paral-

lelizing time series queries on different patient records can significantly improve the

performance of the search engine.

104

Appendix A

Full list of content in

columnMappings

Table A.1: Content of columnMappings array.

Cell Item Description

1 pid patient identification number
2 T time elapsed from the start of patient record

(in units of 5 minutes)
3 cvp central venous pressure
4 heartrate heart rate
5 artbpsys arterial blood pressure (systolic)
6 artbpdias arterial blood pressure (diastolic)
7 artbpmean arterial blood pressure (mean)
8 PAPmean pulmonary artery pressure (mean)
9 cofick Fick cardiac output
10 cotherm thermodilution cardiac output
11 iabp intra-aortic balloon pump
12 ci cardiac index
13 svr sustained virologic response
14 strokevolume stroke volume
15 pcwp pulmonary capillary wedge pressure
16 resp respiratory rate
17 spo2 Saturation Périphérique en Oxygène

(Pulse Oximetry)
18 fio2set fraction of inspired oxygen
19 minvolume minimal respiratory volume
20 o2flow oxygen flow

continued on the next page

105

Table A.1 – (continued)
Cell Item Description

21 peepset positive end expiratory pressure (set)
22 peakinspres peak inspiratory pressure
23 respratespont respiratory rate (spontaneous)
24 respratetotal respiratory rate (total)
25 resprateset respiratory rate (set)
26 tidalvolumeobserved tidal volume (observed)
27 tidalvolumeset tidal volume (set)
28 tidalvolumespont tidal volume (spontaneous)
29 sao2 oxygen saturation of arterial blood
30 waveformvent ventilator waveform
31 icp intracranial pressure
32 glascow Glascow Coma scale
33 baseexcess base excess
34 artco2 arterial carbon dioxide
35 paco2 partial pressure of arterial carbon dioxide
36 pao2 partial pressure of arterial oxygen
37 pH hydrogen ion concentration
38 hco3 bicarbonate level
39 hematocrit hematocrit
40 hemoglobin hemoglobin
41 platelets platelets
42 INR international normalized ratio
43 PT physical therapy
44 PTT partial thromboplastin time
45 WBC white blood cell count
46 RBC red blood cell count
47 TemperatureC temperature in Celsius
48 TemperatureF temperature in Fahrenheit
49 Sodium blood sodium level
50 Potassium blood potassium level
51 Chloride blood chloride level
52 CarbonDioxide carbon dioxide
53 Glucose blood glucose level
54 BUN blood urea nitrogen
55 Creatine creatine
56 Albumin albumin
57 TotalProtein total protein
58 Calcium calcium
59 Magnesium magnesium
60 ALT alanine aminotransferase
61 AST aspartate aminotransferase
62 AlkPhosphate alkaline phosphate

continued on the next page

106

Table A.1 – (continued)
Cell Item Description

63 TotalBili total bilirubin
64 DirectBili direct bilirubin
65 Amylase salivary amylase
66 CPK creatinine phosphokinase
67 CPKMB creatinine kinase-mb
68 Troponin troponin
69 LDH lactate dehydrogenase
70 Lipase lipase
71 UricAcid uric acid
72 Cholesterol cholesterol
73 Triglyceride triglyceride
74 Lactate lactate
75 PacerRate pacer rate
76 PreviousWeight previous weight
77 PreviousWeightF previous weight F
78 DailyWeight daily weight
79 IonizedCalcium ionized calcium
80 epi epinephrine
81 epi-k epinephrine-k
82 heparin heparin
83 insulin insulin
84 lidocaine lidocaine
85 propofol propofol
86 fentanyl fentanyl
87 morphine morphine
88 ativan lorazepam(ativan)
89 vasopressin vasopressin
90 ditiazem ditiazem
91 dopamine dopamine
92 dobutamine dobutamine
93 levophed levophed
94 levophed-k levophed-k
95 amiodorone amiodorone
96 milrinone milrinone
97 neo neo-naclex
98 neo-k neo-naclex-k
99 nitroprusside nitroprusside
100 nitro nitro
101 nitro-k nitro-k
102 esmolol esmolol
103 labetolol labetolol
104 lasix lasix

continued on the next page

107

Table A.1 – (continued)
Cell Item Description

105 aminophylline aminophylline
106 amrinone amrinone
107 procainamide procainamide
108 aggrastat aggrastat
109 amicar amicar
110 atracurium atracurium
111 cisatracurium cisatracurium
112 doxacurium doxacurium
113 midazolam midazolam
114 pancuronium pancuronium
115 pentobarbitol pentobarbitol
116 sandostatin sandostatin
117 reopro reopro
118 tpa tissue plasminogen activator
119 vecuronium vecuronium
120 integrelin integrelin
121 narcan narcan
122 fentanyl(conc) concentrated fentanyl
123 dilaudid dilaudid
124 precedex precedex
125 natrecor natrecor
126 argatroban argatroban
127 lepirudin lepirudin
128 nicardipine nicardipine
129 dopaminedrip dopamine drip

108

Appendix B

Deidentified Discharge Summaries

of Selected Patient Records

B.1 Discharge Summary for Case Study 1

Table B.1: Discharge Summary for Case Study 1.

Admission Date: 2011

Discharge Date: 2011

Date of Birth:

Sex: F

Service: Patient passed away on the Cardiothoracic Surgery Service.

HISTORY OF PRESENT ILLNESS: This is a 41-year-old woman transferred from

yyyy Medical Center, where she had been admitted for dyspnea after being

seen numerous times in the congestive obstructive pulmonary disease

exacerbation and worsening hypoxia requiring intubation on August 7th.

She was noted to have elevated CKs and MBs, and therefore was question of

ischemic heart disease versus myocarditis. She underwent diuresis and had

chest CT scan which showed no evidence of pulmonary embolism or pleural

effusion. She was further evaluation and possible catheterization.

PAST MEDICAL HISTORY: 1. Diabetes mellitus. 2. Borderline high

cholesterol. 3. History of appendectomy.

MEDICATIONS: Aspirin, Ativan, insulin, Lasix, Heparin, Vasotec, and

dobutamine.

ALLERGIES: Penicillin.

PHYSICAL EXAMINATION ON ADMISSION: Temperature 101.0 F, blood pressure

110/58, pulse 106, respirations 15.

continued on the next page

109

Table B.1 – Discharge Summary for Case Study 1 (continued)
Neck is obese with normal carotid upstrokes. Heart normal S1, S2, 2/6

left sternal border systolic murmur. Chest was clear to auscultation

bilaterally. Abdomen is soft and nontender, midline scar. Extremities

no edema, warm lower extremities.

LABORATORIES ON ADMISSION: White blood cell count is 19.6, CK of 554.

Chest x-ray: Generous heart size, question reticular nodular densities.

Electrocardiogram: Sinus tachycardia at 108, normal axis. Q waves in III

and aVF. Borderline left atrial enlargement. Low voltage.

HOSPITAL COURSE: Patient was cared for in the CCU, where she was managed

for congestive heart failure. She was then taken to the Catheterization

Laboratory to evaluate for coronary artery disease and was found to have

an 80% ostial stenosis of the left main coronary artery. She became

hypotensive while they were attempting to engage the right coronary

artery and bradycardic. She was treated with multiple pressors and

defibrillation. After she had undergone ventricular fibrillation, Cardiac

Surgery was contacted and she was taken to extracorporeal support. She

was placed on ECMO. However, she passed away. The family was called and

notified.

Protected Health Information in the above patient record has been deidentified.

110

B.2 Discharge Summary for Case Study 2

Table B.2: Discharge Summary for Case Study 2.

Admission Date: 08/26

Discharge Date: 09/05

Date of Birth:

Sex: M

HISTORY OF PRESENT ILLNESS: The patient is a 24-year-old male with a past

medical history of obesity and obstructive sleep apnea who presented with

complaints of increased swelling and a neck mass times one and half weeks.

The six weeks prior to admission when he was operated on for the removal

of a lipoma. The operation occurred without incident, and the patient did

well.

Approximately one and a half weeks prior to admission the patient noticed

increased pain and swelling in the lateral aspect of his neck on the left

side. He presented to the managed conservatively with pain management.

However, the pain and swelling did not resolve. The patient then began

to experience fevers and difficulty swallowing and difficulty turning

his head. The patient has not had difficulty breathing. He denied

trauma, insect bites, or sick contacts. He presents for evaluation of

his expanding neck mass.

PAST MEDICAL HISTORY: 1. Obesity. 2. Obstructive sleep apnea. 3.

Asthma.

MEDICATIONS ON ADMISSION: Home medications include albuterol.

ALLERGIES: There were no known drug allergies.

SOCIAL HISTORY: The patient lives with his girlfriend and works at Boston

Medical Center. He denied smoking, drug or alcohol use.

FAMILY HISTORY: Family history was remarkable for diabetes mellitus in

multiple first-degree relatives.

PHYSICAL EXAMINATION ON PRESENTATION: Physical examination in the Emergency

Ward revealed vital signs of temperature of 103.9, heart rate 108,

respiratory rate 20, blood pressure 156/60. In general, the patient

was a morbidly obese African-American male sitting in a chair, breathing

with some effort, but in no apparent distress. Head, ears, nose, eyes

and throat examination revealed normocephalic and atraumatic. Pupils

were equal and reactive to light. Extraocular muscles were intact. Neck

examination revealed a warm mass posterior to the left ear about 20 cm

X 8 cm long. Pulmonary examination revealed decreased breath sounds

throughout. Coronary examination was tachycardic, normal first heart sound

and second heart sound. No murmurs, rubs or gallops.

continued on the next page

111

Table B.2 – Discharge Summary for Case Study 2 (continued)
The abdomen was obese, soft, nontender, and nondistended, with no

rebounding, guarding or hepatosplenomegaly, and there were bowel sounds

times four. Extremity examination revealed 2+ peripheral pulses. No

clubbing, cyanosis or edema.

LABORATORY DATA ON PRESENTATION: Admission laboratories were white blood

cell count 19.1, hemoglobin 12.7, hematocrit 35.7, platelets 215. Sodium

131, potassium 4.6, chloride 92, bicarbonate 23, blood urea nitrogen 10,

creatinine 0.9.

RADIOLOGY/IMAGING: CT scan of the neck revealed a splenius capitus myositis

and cellulitis overlying with fluid tracking between plains. There was no

evidence of abscess at that time.

HOSPITAL COURSE:

1. ENDOCRINE: The patient was newly diagnosed with diabetes mellitus. He

was treated with sliding-scales which were adjusted throughout his hospital

stay. During his course in the Intensive Care Unit he was maintained on an

insulin drip.

2. INFECTIOUS DISEASE: (a) Neck mass: The patient was initially admitted

to the general medicine floor for intravenous antibiotics, pain management,

and close followup by Otorhinolaryngology.

Infectious Disease was consulted for further evaluation of the patient’s

neck mass, and the consultants recommended the addition of vancomycin,

clindamycin, and to continue Unasyn which the patient had been started

on. Blood cultures ultimately returned growing coagulase-positive

Staphylococcus.

The patient’s swelling continued to increase, but his respiratory status

remained stable. His fevers continued as well. A chest CT examination

was checked to examine for extension into the mediastinum, and this was

negative. Serial neck CT examinations revealed increase in edema, fat

stranding, and possible abscess formation.

The patient was then seen on consultation by Neurosurgery to evaluate

for extension into the neurologic system. On August 28, the patient

was taken to the operating room for drainage of a left posterior neck

abscess, and 30 cc to 40 cc of pus was expressed and drained. Extensive

necrosis surrounding this are was noted. The patient remained intubated

for airway protection following the procedure, and he was transferred in

good condition to the Surgical Intensive Care Unit. He was followed by the

Medicine consultation team for ongoing diabetes management. Antibiotics

were continued and adjusted as required by sensitivities.

On August 30, routine laboratories revealed that the patient’s hematocrit

had been declining, and his white blood cell count had been increasing.

Clinically, the patient’s neck mass began to increase in size again. That

day the patient suffered an episode of hypotension to a systolic blood

pressure in the 90s, and he was tachycardic.

continued on the next page

112

Table B.2 – Discharge Summary for Case Study 2 (continued)
He was given large volume intravenous fluids and transfusions of packed red

blood cells to restore blood volume and blood pressure. He responded well

to this treatment; however, over the course of that evening the patient

developed atrial flutter. The patient was felt to be septic and extubation

was deferred. Antibiotics were readjusted, and pressors were used p.r.n.

to maintain blood pressure.

On August 31, the patient’s fevers continued. The wound was explored at

bedside. There was no new drainage, but there were increased adhesions.

White blood cell count continued to rise. The patient was seen in

consultation by the Cardiology Service to evaluate for his atrial flutter

and to receive a transesophageal echocardiogram to rule out endocarditis.

Transesophageal echocardiogram was negative for endocarditis. Cardiology

recommended cardioversion and flecainide for stabilization of the patient’s

rhythm.

The patient was transferred to the Medical Intensive Care Unit. His fevers

persisted. White blood cell count continued to increase. Hypotension

continued to be treated with large volume intravenous fluids to maintain

blood pressure.

Over the evening of September 1, the patient developed atrial fibrillation

to the 130s. He was cardioverted to normal sinus rhythm and extubation

was again deferred. The patient’s urine also was noted to become rust

colored, and his liver function tests began to rise. A repeat CT scan was

suspicious for persistent pus in the neck.

On September 2, the possibility of meningitis was entertained, and a

lumbar puncture was attempted to rule out meningitis. The patient’s fevers

continued, and the patient developed an increasing oxygen requirement.

The patient was again taken to the operating room and an incision an

drainage was performed, and a drainage of prevertebral collection of fluid

was drained as well.

On September 3, the fevers continued. The patient continued to require

pressors as necessary to maintain blood pressure. Lumbar puncture was

again attempted, and this was again unsuccessful. The patient underwent

bronchoscopy to remove mucous plugs felt to be contributing to the

patient’s increasing oxygen requirements. A repeat CT scan revealed a

possible persistent neck abscess and possible lower lung collapse, possibly

consistent with acute respiratory distress syndrome.

On September 4, the patient was noted to continue to require increasing

oxygen. A repeat bronchoscopy was performed and some mucous plugs were

obtained. The patient continued to have very high fevers with very

elevated creatine kinase levels. The diagnosis of malignant hyperthermia

was entertained. The patient’s urine output declined, and the possibility

of acute tubular necrosis secondary to rhabdomyolysis or sepsis was

entertained.

continued on the next page

113

Table B.2 – Discharge Summary for Case Study 2 (continued)
On September 5, the patient was seen on consultation by Nephrology. CVVHD

was recommended and undertaken. For the patient’s persistent very high

fevers dantrolene was given for possible malignant hyperthermia. This

resulted in hypothermia. The patient continued to have a worsening

metabolic and respiratory acidosis over the day of September 5. THAM and

bicarbonate were given to treat for this. Additionally, the patient’s

platelets were declining, and this was felt to be consistent with

disseminated intravascular coagulation. During the day of September 5,

the patient continued to have hemodynamic instability.

On the morning of September 5, the patient suffered an episode of

hypotension and asystolic arrest. Advanced cardiac life support protocols

were initiated. The patient was successfully revived; however, remained

in very critical condition. During that day, further arrests times

two occurred with successful revival but continued hypotension, septic

physiology, and bradycardia.

Family meetings were held throughout the day to update family members as

events unfolded. A late day family meeting took place where the patient’s

critically ill status was discussed with the family. At the end of that

meeting the patient again became bradycardic. At that time the patient’s

family determined that no further resuscitative efforts should be made.

At approximately 6:15 p.m. on September 5, the patient became bradycardic

and hypotensive. No intervention was undertaken. The patient became

asystolic. The patient was pronounced expired at 18:40 on September 5.

An autopsy was performed, per the family’s request.

DISCHARGE DIAGNOSES: 1. Diabetes mellitus. 2. Staphylococcal sepsis. 3.

Neck abscess.

Protected Health Information in the above patient record has been deidentified.

114

B.3 Discharge Summary for Case Study 3

Table B.3: Discharge Summary for Case Study 3.

Admission Date: 2014

Discharge Date: 2014

Date of Birth:

Sex: M

Service: Cardiac Surgery

HISTORY OF PRESENT ILLNESS: This is a 66-year-old male who is status post

two aortic surgeries in 199X for dissection; initially in April of and

later in October of .

He had chronic carotid dissection which was followed conservatively, but

over the years had developed a significantly large aneurysm of the aortic

arch measuring 6.8 cm. He also became symptomatic and started reporting

increased shortness of breath at rest and on exertion as well as increased

fatigue over the past few months.

He underwent a cardiac catheterization as part of his evaluation and was

then referred for this procedure. He understood the risks involved but

wished to proceed.

PAST MEDICAL HISTORY:

1. Hypertension.

2. Hyperlipidemia.

3. History of atrial fibrillation/atrial flutter; status post three

cardioversions.

4. History of kidney stones.

5. History of pneumonia (times two).

6. History of left hemidiaphragm paralysis secondary to frank nerve damage

during surgery in.

7. Status post abdominal aortic aneurysm repair in XXX and descending

aortic dissection repair in XXXX.

8. Status post vocal cord paralysis secondary to vocal cord injury during

surgery in 1991.

9. Status post left vocal cord Teflon implant in January of 1992.

10. Diverticulitis.

PHYSICAL EXAMINATION ON PRESENTATION: Examination on admission revealed

the patient’s heart rate was 76 (sinus), and his blood pressure was

138/90. His weight was 200 pounds. The patient was a well-developed and

well-nourished male in no apparent distress. The pupils were equal, round,

and reactive to light and accommodation. The extraocular movements were

intact. The neck was supple.

continued on the next page

115

Table B.3 – Discharge Summary for Case Study 3 (continued)
There was no jugular venous distention. No bruits. The lungs were clear

to auscultation bilaterally. No wheezes, rhonchi, or rales. Heart was

regular in rate and rhythm. There were no murmurs. The abdomen was obese,

soft, nontender, and nondistended. The extremities were warm. There was

no edema. No cyanosis.

BRIEF SUMMARY OF HOSPITAL COURSE: On ZZZZ the patient was taken to the

operating room and underwent a redo sternotomy with arch replacement and

innominate vein bypass graft.

The operation was complicated by massive bleeding, hypotension, and shock.

The patient required multiple blood products.

Immediately postoperatively, he developed multiple organ failure including

renal failure was oliguric and was started on continuous venovenous

hemofiltration, respiratory failure with increased hypoxia and ventilatory

support requirement, and liver failure with worsening liver function tests.

He remained in cardiogenic shock and required massive anatropic and pressor

support to maintain his blood pressure. His chest was left open. During

the two days that he spent in the Cardiac Surgery Intensive Care Unit, all

organs were supported. He was followed by the Renal Service, Hepatology

Service, and the General Surgery Service for question their involvement.

Despite extreme attempts to support him his cardiogenic shock persisted,

and he became more acidotic with multiple arrhythmias requiring pacing.

Over the course of ZZZ, despite attempts at continuous pacing, he became

asystolic. The chest was opened, but cardiac function could not be

returned. The patient was pronounced dead at 9:05 p.m. The family was

contacted and refused autopsy.

Protected Health Information in the above patient record has been deidentified.

116

Bibliography

[1] Thull B, Popp HJ, Rau G. Man-Machine Interaction in Critical Care Settings.

IEEE Engineering in Medicine and Biology 1993;12(4):42–49.

[2] Fackler JC, Kohane IS. Integration of Intermittent Clinical

Data with Continuous Data from Bedside Monitors. Children’s

Hospital’s Clinical Data Integration Project Electronic Pages:

http://www.chip.org/projects/icuinteg/cbmsfull.html.

[3] Donchin Y, Gopher D, Olin M, Badihi Y, Biesky M, Sprung CL, Pizov R, Cotev

S. A look into the Nature and Causes of Human Errors in the Intensive Care

Unit. Critical Care Medicine February 1995;23(2):294–300.

[4] Lawless S. Crying Wolf: False Alarms in a Pediatric ICU. Critical Care Medicine

1994;20:981–984.

[5] Cropp AJ, Woods LA, Raney D, Bredel DL. Name that tone. the Proliferation

of Alarms in the Intensive Care Unit. Chest 1994;105:1217–1220.

[6] Saeed M, Mark RG. MIMIC-II: A Massive Temporal ICU Patient Database to

Support Research in Intelligent Patient Monitoring. Computers in Cardiology

2002;29:641–644.

[7] Mark RG. Integrating Data, Models and Reasoning in Critical Care. National In-

stitute of Biomedical Imaging and Bioengineering Proposal 2003;R01 EB001659.

117

[8] Abdala OT, Clifford GD, Saeed M, Reisner A, Moody GB, Henry I, Mark RG.

The Annotation Station: An Open-source Technology for Annotating Large

Biomedical Databases. Computers in Cardiology 2004;31.

[9] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG,

Mietus JE, Moody GB, Peng CK, Stanley HE. Physiobank, Physiotoolkit, and

Physionet: Components of a New Research Resource for Complex Physiologic

Signals. Circulation 2000 (June 13);101(23):e215–e220. Circulation Electronic

Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215.

[10] Shabot MM. The HP CareVue Clinical Information System. International Jour-

nal of Clinical Monitoring and Computing 1997 August;14(3):177–84.

[11] ANSI/IEEE, New York. IEEE Standard for Binary Floating Point Arithmetic,

Std 754-1985 edition, 1985.

[12] Moody G. WFDB Applications Guide. Harvard-MIT Division of Health Sciences

and Technology, Cambridge, MA, USA, 10 edition, 2005 (June 13). Electronic

Edition: http://www.physionet.org/physiotools/wag/wag.htm.

[13] Moody G. WFDB Programmer’s Guide. Harvard-MIT Division of Health Sci-

ences and Technology, Cambridge, MA, USA, 10 edition, 2005 (June 13). Elec-

tronic Edition: http://www.physionet.org/physiotools/wpg/wpg.htm.

[14] Subversion (SVN) repository for WFDB conversion programs for MIMIC II:

http://mimic.mit.edu/svn/wfdb-convert/.

[15] Tansel A, Clifford J, Jajodia S, Segev A, Snodgrass R. Temporal Databases:

Theory, Design, and Implementation. Benjamin/Cummings, 1993.

[16] Chomicki J. Temporal Query Languages: A Survey. In Proceedings of the First

International Conference on Temporal Logic. 1994; 506–534.

[17] Snodgrass R. The Temporal Query Language TQuel. ACM Transactions on

Database Systems 1987 June;12(2):247–298.

118

[18] Snodgrass R. TSQL2 Temporal Query Language. Norwell, MA, USA: Kluwer

Academic Publishers, 1995.

[19] Agrawal R, Faloutsos C, Swami A. Efficient Similarity Search in Sequence

Databases. In Proceedings of the 4th Conference on Foundations of Data Or-

ganization and Algorithms. 1993; 69–84.

[20] Wu Y, Agrawal D, Abbadi A. A Comparison of DFT and DWT based Simi-

larity Search in Time-Series databases. In Proceedings of the 9th International

Conference on Information and Knowledge Management. 2000; .

[21] Kanth KV, Agrawal D, Singh A. Dimensionality Reduction for Similarity Search-

ing in Dynamic Databases. In Proceedings of the ACM Special Interest Group

on Management of Data (SIGMOD) Conference. 1998; 166–176.

[22] Chan KP, Fu WC. Efficient Time Series Matching by Wavelets. In Proceedings

of the 15th International Conference on Data Engineering. 1999; .

[23] Shahabi C, Chung S, Safar M, Hajj G. 2D TSA-Tree: A Wavelet-based Approach

to Improve the Efficiency of Multi-Level Spatial Data Mining. In Proceedings

of the 13th International Conference on Scientific and Statistical Database Man-

agement. 2001; .

[24] Keogh E, Chakrabarti K, Pazzani M, Mehrotra S. Dimensionality Reduction for

Fast Similarity Search in Large Time Series Databases. Journal of Knowledge

and Information Systems 2000;.

[25] Keogh E, Chakrabarti K, Mehrotra S, Pazzani M. Locally Adaptive Dimension-

ality Reduction for Indexing Large Time Series Databases. ACM Transactions

on Database Systems 2002 June;27(2):188–228.

[26] Saeed M, Mark RG. Efficient Hemodynamic Event Detection Utilizing Relational

Databases and Wavelet Analysis. Computers in Cardiology 2001;28:153–156.

[27] Littlefield B. Mastering MATLAB 7. Prentice Hall, 2005.

119

[28] WFDB tools Electronic Pages:

http://www.physionet.org/physiotools/matlab/wfdb tools/.

[29] Douglass M, Clifford GD, Reisner A, Moody GB, Mark RG. Computer Assisted

De-identification of free text in the MIMIC-II database. Computers in Cardiology

2004;31.

[30] Michio S, Takahiro Y. Fuzzy-logic-based Approach to Qualitative Modeling.

IEEE Transactions on Fuzzy Systems 1993;1(1):7–31.

120

