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Abstract

It is possible, using a smart phone or similar device, to
collect ECGs from patients in remote locations, storing the
results to be analyzed later. In this situation, however, the
person collecting the ECG may not have the time or the
necessary training to evaluate the quality of the recording
at the time it is collected. It is useful for the device itself to
analyze the recorded signals and provide feedback to the
user about their quality.

This paper explores a number of heuristic rules that
can be used to detect the most common problems in ECG
recordings. These rules are designed to be simple enough
that they can easily be tested in real time on a mobile
phone. A combination of several of these rules is able
to correctly detect a majority of poor-quality ECGs, as
demonstrated using the PhysioNet/CinC 2011 Challenge
database.

1. Introduction

With smart phones and similar mobile computing de-
vices becoming widely available, even in the world’s poor-
est countries, it is possible to use one of these devices as
a mobile platform for collecting ECGs. One of these de-
vices can be used to record ECGs from patients in rural
areas, collecting the results for later analysis. However,
doing this requires the device to provide some feedback
to the user about the quality of the recording; if there is
a problem, such as an improperly attached electrode, it is
much easier to fix if the user can be made aware of the
issue immediately.

The 2011 PhysioNet/Computing in Cardiology Chal-
lenge [1] is to develop an algorithm that can provide this
sort of feedback. Given a short (10-second) sample of a
12-lead ECG, the algorithm should be able to determine
whether the recording is “good enough” to be used for later
analysis. The objective is for the algorithm to attempt to
match, as closely as possible, the opinions of a group of
human reviewers, who have classified each record as ei-
ther “acceptable” or “unacceptable.”

In the Challenge database, there are many records that

stand out as being obviously faulty, in ways that should
be easy for a computer to detect, and it seems clear that
some simple heuristics could be used to reduce the size of
the problem substantially. Even though they cannot hope
to fully solve the problem of assessing “signal quality,”
such methods can be used to quickly identify both very-
high-quality and very-low-quality recordings. In the less
common, questionable cases, a more sophisticated analy-
sis may be needed; in the end, the user can be allowed
to decide whether to keep a possibly-faulty ECG or to try
again.

2. Possible algorithms

A set of algorithms designed to detect the most com-
mon problems in the Challenge records are discussed be-
low. These algorithms were tested based on the pub-
lished classifications for the Challenge training set. Note
that the “score” of an algorithm is measured as the frac-
tion of records that are classified correctly. This training
set included 773 “acceptable” records, 225 “unacceptable”
records, and 2 unclassified (which were not counted for
scoring.)

Based on the published classifications, it appears that
most reviewers felt a record was still “acceptable” if all but
one signal was of decent quality. Therefore, the following
algorithms only consider a record unacceptable if at least
two signals are found to be faulty.

2.1. Constant sections of a signal

By far the most common flaw in the Challenge records is
for a signal to be completely flat for part or all of a record,
generally indicating that one or more electrodes are not
attached. In contrast, a real ECG is never constant; there is
always some low-level noise, if nothing else.

To check for constant sections, all we need to do is track,
for each signal, the most recent value, and the number
of consecutive samples with that value. If the number of
consecutive samples exceeds some threshold, the signal is
marked as unusable.

In the Challenge training set, 123 of the 225 “unaccept-
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able” records (and none of the “acceptable” ones) had two
or more signals that each contained a constant section of at
least 200 milliseconds, giving this method an overall score
of 0.897.

2.2. Overall range

Another very simple test is to look at the maximum and
minimum values for a signal. If the range is too small, the
signal is likely to be completely useless (perhaps because
an electrode is not properly attached.) If the range is too
large, this could result from one or more large noise spikes,
or from a severely drifting baseline; although these are not
necessarily fatal problems, reviewers for the Challenge did
generally mark such cases as unacceptable.

In the Challenge training set, “acceptable” signals did
occasionally have an extremely small or extremely large
range, but if the range was smaller than 0.2 millivolts, or
larger than 15 millivolts, the signal was more likely to be
“unacceptable.” Using these values as cutoffs, 98 of the
“unacceptable” records, and none of the “acceptable” ones,
had at least two signals with too small a range; 46 of the
“unacceptable” records and 12 of the “acceptable” ones
had at least two signals with too large a range. Overall,
this method had a score of 0.908.

2.3. Frequency of large changes

In a normal ECG, most parts of the signal are fairly
“quiet,” in that there are no sudden changes. If we look
at a small section of the signal (on the order of a few tens
of milliseconds), in most cases the range of samples is very
small. At the same time, there will be some sections — the
actual physiological events that we’re interested in observ-
ing — that do contain large, sudden changes.

A simple way to test this is to look at overlapping in-
tervals: first, the interval from t = 0 to t = 2k; next, the
interval from t = k to t = 3k; then, t = 2k to t = 4k; and
so forth. A value of k = 32ms seems to work well. In each
interval, compute the minimum and maximum values; this
is still a very fast operation because each sample is only
part of at most two of these intervals. An interval is then
considered “quiet” if the range is less than some thresh-
old. A high-quality signal should contain mostly, but not
entirely, quiet intervals.

In the Challenge training set, this method proved to be
useful for identifying good signals (rather than poor sig-
nals as with the methods above.) Using a threshold of 0.1
millivolt, 100 of the 773 “acceptable” records, and none of
the “unacceptable” ones, contained between 64% and 96%
quiet intervals. (This gives this method the unimpressive
overall score of 0.326.)

3. Combined algorithm

All of the above methods can be considered useful to
some extent, and a real-world application would need to
incorporate all of these tests (probably with some refine-
ments) as well as others. In the case of the Challenge, the
objective was simply to give a “yes” or “no” answer for
each record, and the “score” is simply the fraction of cor-
rect answers (according to a somewhat arbitrary notion of
correctness.) There are many ways that the above methods
could be combined into a single algorithm; in the end, the
best scoring method is highly dependent on the frequency
of the various types of problems that happen to be present
in the Challenge database.

After testing a variety of possible combinations of the
above methods and others, the best score for the Challenge
training set was obtained by the following:

• If a signal is constant for an extended period (at least 200
milliseconds), mark it as bad. If two or more signals are
marked as bad, mark the record as unacceptable.
• If all signals have an appropriate fraction of quiet inter-
vals (between 64% and 96%), mark the record as accept-
able.
• If a signal has an overall range of less than 0.2 millivolts,
or more than 15 millivolts, mark it as bad. If two are more
signals are marked as bad, mark the record as unaccept-
able.
• Otherwise, the record’s status is uncertain.

For the Challenge training set, most of the “uncertain”
records (664 of 744) were in fact considered acceptable by
human reviewers, so the best-scoring method was to call
these acceptable.

This combined algorithm attained a score of 0.913 on
the Challenge training set (misclassifying 9 acceptable and
78 unacceptable records.) It also attained a score of 0.896
on the Challenge test set (set “B”), for which the reference
classifications have not been published.

4. Conclusions

The algorithms described above are very simple to im-
plement, requiring minimal computation, no floating-point
math, and very little memory. These methods are effective
enough to detect a large fraction of poor-quality ECGs, and
a significant fraction of high-quality ones. These methods
could be used, perhaps with some refinements, as the first
part of a quality control system; ECGs that clearly pass or
fail could be accepted or rejected immediately, while the
more questionable cases could be subjected to more de-
tailed (slower) analysis.

Trying to judge these algorithms according to the Chal-
lenge rules is somewhat unrealistic. In a real-world ap-
plication, the program’s performance would not corre-
spond to the number of correct answers. The real-world
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penalty for incorrectly marking a “good” record as “bad” is
fairly small (at most a minute or two wasted), whereas the
penalty for incorrectly marking a “bad” record as “good”
is potentially much larger.

Furthermore, in a real-world application, the goal would
not simply be to look at an ECG and pronounce it “accept-
able” or “unacceptable.” Instead, the program should pro-
vide useful suggestions, telling the operator what the prob-
lem appears to be. Ideally, the program should start out
by aiming high, reporting potential problems even if they
wouldn’t necessarily render the record “unacceptable;” for
instance, a single disconnected electrode is easy to detect
and easy to fix. On the other hand, if the operator has tried
several times and found the same problem every time, then
the ECGs should probably be accepted despite their flaws.

(Of course, for this to work well requires some very
careful user-interface design. The system needs to be de-
signed to ensure that the operator actually reads its warn-
ing messages, and pays attention to them, rather than suc-
cumbing to the universal human urge to click “OK” until
the problem goes away.)

A great deal of further work would be useful. These al-

gorithms have been tuned to work well for the Challenge
data sets, but the parameters are probably not ideal for a
system, like that described above, that is intended to in-
teract with the user and provide detailed feedback. The
algorithms could perhaps be designed to adapt themselves
to the data they are given, rather than having all their pa-
rameters hard-coded. And many additional tests could be
devised to potentially detect other, less common problems
that these algorithms do not look for.
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