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Abstract 
 
In this paper, we describe a Gaussian wave-based state space to model the temporal 
dynamics of electrocardiogram (ECG) signals. It is shown that this model may be 
effectively used for generating synthetic ECGs as well as separate characteristic waves 
(CWs) such as the atrial and ventricular complexes. The model uses separate state 
variables for each CW, i.e. P, QRS and T, and hence is capable of generating 
individual synthetic CWs as well as realistic ECG signals. The model is therefore 
useful for generating arrhythmias. Simulations of sinus bradycardia, sinus tachycardia, 
ventricular flutter, atrial fibrillation, and ventricular tachycardia are presented. In 
addition, discrete versions of the equations are presented for a model-based Bayesian 
framework for denoising. This framework, together with an extended Kalman filter 
(EKF) and extended Kalman smoother (EKS), were used for denoising the ECG for 
both normal rhythms and arrhythmias. For evaluating the denoising performance the 
signal-to-noise ratio (SNR) improvement of the filter outputs and clinical parameter 
stability were studied. The results demonstrate superiority over a wide range of input 
SNRs, achieving a maximum 12.7 dB improvement. Results indicate that preventing 
clinically relevant distortion of the ECG is sensitive to the number of model 
parameters. Models are presented which do not exhibit such distortions.  The approach 
presented in this paper may therefore serve as an effective framework for synthetic 
ECG generation and model-based filtering of noisy ECG recordings. 
 
Keywords: denoising, electrocardiogram (ECG), ECG modeling, extended Kalman 
filter (EKF), extended Kalman smoother (EKS).  
 
 

1. Introduction 
 
The electrocardiogram (ECG) obtained by a noninvasive technique is a record of the bio-potentials 
associated with the contractions of the heart muscle, which provides useful information for the 
detection, diagnosis and treatment of cardiac diseases. However, ECG signals are usually corrupted 
with unwanted interference, generally referred to as noise or artifact. Since the interference is often in-
band, time-coincident and morphologically similar to cardiac activity, accurately extraction of 
information from an ECG requires effective characterization of the constituent waveform 
morphologies. Any filtering technique must preserve the important clinical features while providing 
high attenuation of noise. Accordingly, several techniques have been proposed to extract the ECG 
components contaminated with the background noise and allow the measurement of subtle features in 
the ECG signal. The adaptive filter architecture is among the common approaches (Thakor and Zhu 
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1991). Statistical techniques such as principal component analysis (Moody and Mark 1989), 
independent component analysis (Barros et al. 1998, and He et al. 2006), and neural networks (Clifford 
and Tarassenko 2001) have also been used to extract a noise-free signal from the noisy ECG. Over the 
past several years; methods based on the wavelet transform (WT) have also received a great deal of 
attention for the denoising of signals that possess multi-resolution characteristics such as the ECG 
(Kestler et al. 1998, Donoho 1995, Popescu et al. 1998, Daqrouq 2005, Sayadi and Shamsollahi 2007). 

In order to test the performance of a filtering system there are generally two approaches. The first 
is to use expert annotated data. Although this guarantees that the data are realistic, it is hard to test at 
extremely low noise levels, or when the data are swamped by high noise. To test in such circumstances 
one must employ a realistic model of the ECG. Although some excellent cellular models exist, such 
approaches are computationally intensive and therefore difficult to employ for large-scale simulations. 
McSharry et al. (2003) presented an electrocardiographic dynamical model (EDM) for generating a 
synthetic ECG signal with realistic PQRST morphology and heart rate dynamics. The aim of this 
model was to provide a standard realistic ECG signal with known characteristics, which can be 
generated with specific statistics thereby facilitating the performance evaluation of a given technique. 
Synthetic ECGs can be generated with different sampling frequencies, morphologies, heart rates, heart 
rate variabilities (HRVs) and different noise levels.  

Many updates to this model and applications of it have been made over the last ten years since its 
first creation in 2000. First, a model-based filtering, compression and segmentation/feature extraction 
approach based on a least squares fit of observations to the model was proposed (Clifford et al. 2005). 
This approach was then applied to filtering, compression, QT-interval analysis and beat segmentation 
(Clifford and Villarroel 2006). The model has also been used to model fetal ECG (Sameni et al. 
2007a). Recently, the model was updated to include a Hidden Markov Model to account for beat type 
changes (Clifford et al. 2008, Clifford et al. 2010). Moreover, in a recent work, we have provided a 
modified version of the EDM on a wave-related basis, which showed promising results for PVC 
detection (Sayadi et al. 2010). 

Since the model formulation was in the form of a state space representation, Bayesian estimation 
procedures could be applied to the model, if appropriate observations were found and related to the 
state variables. In a pioneer work, Sameni et al. proposed the use of an explicit phase variable instead 
of the first two motion variables that indicates the angular location of the P, Q, R, S, and T waves. They 
obtained a compact set with two state variables, based on which the ECG measurement and the 
constructed phase signal could be relate to the state variables of the state space equations. Bayesian 
model-based frameworks were also proposed where the model was updated to explicitly use the three 
orthogonal dimensions and the equations were re-factored into a polar coordinate system to denoise the 
ECG by using a Kalman filter to track and constrain the model parameters (Sameni et al. 2006, Sameni 
et al. 2007b). This model has also been used to remove cardiac contaminants (Sameni et al. 2008). In 
addition, this technique has been modified using auto-regressive dynamics assignment to the model 
parameters (Sayadi et al. 2007) and applied to simultaneous denoising and compression (Sayadi and 
Shamsollahi 2008), and ECG beat segmentation (Sayadi and Shamsollahi 2009). 

In the previously proposed approaches towards Bayesian ECG analysis (Sameni et al. 2007b, 
Sayadi and Shamsollahi 2008), occasional morphologic changes that only appear in some of the ECG 
cycles has considerable effects on the filter performance. In these cases, the phase error of the model 
can lead to large errors in the Gaussian parameters, since neither the model nor the measurements are 
reliable for the filter. For such occasional morphologic changes, even temporal adaptation of the filter 
parameters is not helpful, as the filter does not have sufficient time to adapt itself.  
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In this paper, in order to overcome such inaccuracies, we assume the presence of distinct coupled 
components for the ECG signal, based on which a Gaussian wave-based dynamical framework is 
developed. We study the proposed wave-based ECG dynamical model as a generative model for 
producing synthetic ECG signals as well as separate characteristic waveforms (CWs) such as the P-
wave in isolation. In this way we simulate a series of arrhythmias with the model. In addition we 
investigate the state space Bayesian filtering approach (using our model with the EKF and EKS) and 
evaluate their performance on both normal and ectopic beats. 

The paper is organized as follows. Section 2 provides relevant background on the original ECG 
dynamical model and presents the wave-based dynamical model. In Section 3, the details of the 
proposed method for synthetic ECG generation and Bayesian denoising is presented. Section 4 is 
devoted to simulation results. Finally, discussion and concluding remarks are provided in section 5. 

     
2. ECG Dynamical Model 
 
In this section, the original ECG dynamical model proposed by McSharry et al. (2003) is reviewed 
briefly. The model is later used to introduce the wave-based dynamical model by modifications in the 
ECG formation using the characteristic waves. In addition, the resultant model is shown to be capable 
of generating separate CWs as well as the synthetic ECG. 
 
2.1. Original Dynamical Model 
 
McSharry et al. (2003) proposed a realistic synthetic ECG generator using a set of state equations that 
generates a three-dimensional (3D) trajectory in a 3D state space with coordinates (x, y, z). The model 
consists of a circular limit cycle of unit radius in the (x, y) plane around which the trajectory is pushed 
up and down as it approaches the turning points in the ECG (P, Q, R, S and T). In fact, the 
characteristic waveforms of the ECG are described by Gaussian-type events corresponding to negative 
and positive attractors/repellors in the z direction. Quasi-periodicity of the ECG is reflected by the 
movement of the trajectory around the attracting limit cycle, while the inter-beat variation in the ECG 
is reproduced using the motion of the trajectory in the z direction. The original dynamical equations of 
motion are given by a set of three ordinary differential equations in Cartesian coordinates:  
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where 221 yx +−=γ , πθθθ 2mod)( ii −=∆ , ),(2 xyanat=θ  is the four quadrant arctangent of the 

elements of x and y, ranging over ],[ ππ− , and ω is the angular velocity of the trajectory as it moves 
around the limit cycle, and is related to the beat-to-beat heart rate as ω=2πf. As it is seen in (1), each of 
the P, Q, R, S, and T-waves of the ECG waveform are modeled with a Gaussian function located at 
specific angular positions θ i. The ai, bi and θ i terms in (1) correspond to the amplitude, width, and 
center parameters of the Gaussian terms of this equation. Finally, the baseline wander of the ECG is 
modeled with the parameter z0 that is assumed to be a relatively low amplitude sinusoidal component 
coupled with the respiratory frequency (McSharry et al. 2003). The z coordinate of this trajectory, 
when plotted versus time gives the synthetic ECG. It can be seen that the ECG signal z is represented 
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by a sum of Gaussian functions, whose amplitudes, angular spreads and locations are controlled by the 
Gaussian kernel parameters (ai, bi, θ i

 

). Accordingly, different combinations of this set of parameters 
result in different morphologies for the produced ECG signal. 

2.2. Wave-based Dynamical Model 
 
The EDM uses the limit cycle to reproduce the quasi-periodicity of the signal (HRV) and the beat-to-
beat variation in the average morphology (which in turn is defined by a set of Gaussian kernel 
parameters). The model output is the combination of these kernels which mimics a realistic ECG 
signal. A more flexible approach, particularly when applying the model to filtering arrhythmias, is to 
consider each Gaussian separately. Based on this motivation, we have recently introduced a wave-
based ECG dynamical model (WEDM) by separating different events of the ECG, which results in a 
dimensionality increase that facilitate separate analysis of coupled events (Sayadi et al. 2010).  

Each individual heart beat is comprised of a number of distinct cardiological stages, which in turn 
give rise to a set of distinct features in the ECG pattern. These features represent either depolarization 
(electrical discharging) or repolarization (electrical recharging) of the muscle cells in particular regions 
of the heart. The cardiac cycle begins with the P wave, which corresponds to the period of atrial 
depolarization in the heart. This is followed by the QRS complex, which corresponds to the period of 
ventricular depolarization, and is generally the most recognizable feature of an ECG waveform. The T 
wave follows the QRS complex and corresponds to the period of ventricular repolarization. 
Additionally a small U wave (following the T wave) is occasionally present. 

Assuming the presence of three distinct CWs, corresponding to the P wave, QRS complex and T 
wave, the ECG signal is divided into three coupled components, each of which corresponds to a 
specific portion of the heart cycle. Accordingly, the WEDM is given by (Sayadi et al. 2010): 
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where P, C and T represents the P wave, the QRS complex and the T wave, respectively. The +/- 
superscripts indicate the two Gaussian waves which are used to deal with asymmetries (Clifford et al. 
2005). Similar to McSharry et al. (2003), P0, C0 and T0 are the baseline values which are assumed to 
be coupled to the respiratory frequency fr using P0(t)=C0(t)=T0(t)=Asin(2πfr

 

t) with A=50 μV to 
account for the corresponding baseline wander of the specific characteristic waveform. 

  
3. Method 
 
In this section, we review the procedure of RR-interval generation to account for the effect of 
sympathovagal balance and to reflect it in the beat-to-beat changes of the cardiac cycle. In addition, we 
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incorporate optional parameters in the model to control the synthetic ECG parameters such as 
observational uncertainty and the sampling frequency. Afterwards, we show the new form of the 
dynamic equations (2) in polar coordinates, according to which a discrete state space representation is 
acquired to construct Bayesian framework for denoising applications. 
 
3.1. Synthetic ECG generation 
 
As stated before, the wave-based dynamical model (2) generates the three CWs which are separate in z 
dynamics, but are coupled in timing as well as in nature. The model has 7 events, i.e. {P ˉ, P +, Q, R, S, 
T ˉ, T +

 

}, that act as push-pulls in the z direction as the corresponding trajectory passes around the unit 
limit cycle in the (x, y) plane. By contrasting the dynamical model (2) with the mechanisms underlying 
the cardiac cycle, it is obvious that the time required to complete one lap of the limit cycle is equal to a 
single beat duration and can be considered as the RR-interval of the synthetic ECG signal. On the other 
hand, the RR sequence timing can be assumed equal to the PP and TT sequences, since they all result 
from a physiological subsequence. Hence, variations in the length of the intervals can be incorporated 
by varying the same parameter, the angular velocity ω, to include the sequential coupling of the CW 
occurrence. To simulate the quasi-periodicity of the synthetic cardiac cycle, the time-dependent angular 
frequency of motion around the limit cycle is given by: 
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where R(t) represents the time series generated by the RR-process, which introduces variations in the 
instantaneous heart rate time series using the generated beat-to-beat RR-intervals (the RR tachogram). 
Physiologically speaking, the heart rate may be increased by slow acting sympathetic activity or 
decreased by fast acting parasympathetic (vagal) activity. The balance between the effects of these two 
opposite acting branches of the autonomic nervous system is referred to as the sympathovagal balance 
and is believed to be reflected in the beat-to-beat changes of the cardiac cycle (Malik and Camm 1995). 
To incorporate the effect of the sympathetic and parasympathetic modulation of the RR-intervals, we 
have applied the same spectral estimation strategy as McSharry et al. (2003). In fact, the RR-process is 
supposed to generate RR-intervals which have a bimodal power spectrum consisting of the sum of two 
Gaussian distributions, whose parameters are motivated by the typical power spectrum of a real RR 
tachogram (Malik and Camm 1995). Having established the generation procedure for the RR-process, 
we are able to the use the synthetic model (2) for realistic CW generation. To solve the equations of 
motion (2) for generating synthetic CWs, they are integrated numerically using a fourth-order Runge–
Kutta method (Press et al. 1992) with a fixed time step Δt=1/ fs where fs is the sampling frequency of 
the generated discrete ECG waveform. In order to simplify the dimensions and later relate the model 
parameters with real ECG recordings, the ai

 

 terms in (2) will be replaced with: 
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where the α i are the peak amplitudes of the Gaussian functions used for modeling each of the ECG 
components (Sameni et al. 2007b). This definition may be verified from (2), by neglecting the baseline 
wander term (z − z0 z) and integrating the  equation with respect to t. The ECG generation is now 
straight forward. Since the solution of (2) gives the time-series P(t), C(t) and T(t),  the synthetic ECG is 
obtained by: 

 

)()()()( tTtCtPtECG ++=  (5) 
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3.2. Bayesian filtering 
 
A classical problem in estimation theory is the estimation of the hidden states of a system with an 
underlying dynamic model that are observable through a set of measurements. The well-known Kalman 
filter (KF) is one such method and under certain general constraints, it can be proved to be the optimal 
filter in the minimum mean square error sense (Kay 1993). 

In the previous subsection, it was shown that realistic ECG signals can be produced by integrating 
a set of motion equations which modeled distinct CW of an ECG signal. However, since the equation 
set (2) is a state space representation, it can be used for a Bayesian paradigm construction. In the 
following, the proposed model (2) is used to model the temporal dynamics of ECG signals in a 
Bayesian framework for ECG denoising. Following the proposal of Sameni et al. (2005), we benefit 
the polar representation of the dynamical equations (2). With the proposed substitution (4), the new 
form of the dynamic equations in polar coordinates can be expressed as: 
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where r and φ are the radial and angular state variables in polar coordinates, respectively. Similar to 
polar version of McSharry’s model introduced by Sameni et al. (2007), this new set of equations has 
some benefits compared with the original equations (2). Firstly, the radial behavior of the generated 
trajectory converges to the limit cycle of r=1 for any initial value of r≥1. However, the second to fifth 
equations of (6) are independent of r, making the first equation redundant. Therefore, this first equation 
may be excluded as it does not affect the synthetic CWs (the P, C and T state variables). This leads to a 
simpler representation with straightforward interpretation. Secondly, the phase parameter φ is an 
explicit state-variable that indicates the angular location of different events, which is further used for 
the implementation of Bayesian ECG filters. In order to construct the discrete state space model used in 
Bayesian filters, we use a variant of (6) in its discrete form. The discrete state space representation in 
polar coordinates is given by: 
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where δ is the sampling period, φ is the wrapped phase in polar coordinates and 
πθϕθ 2mod)(

kk iki −=∆ . Moreover, the inaccuracies of the dynamic model including the baseline 

wander and the respiration modulation are replaced by perturbation terms ηP, ηC and ηT

Having considered four equations in (7) as the state space representation for the ECG signal, the 
process equations of a Bayesian framework are formed. Relating the ECG signal as an observation to 
the state variables in the left side of state space model (7) is now straightforward, since the CWs are 
summed up to form the record. In addition, a saw-tooth-shape signal that is expected to be zero at R-
peaks, and being linearly assigned a phase between −π and π to the intermediate samples is also formed 
as the other observation. The observed noisy phase 

 , which are 
random additive noises.  

kφ and noisy amplitude kz of the ECG are given by: 
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where 
k

u1 and 
k

u2 are the observation noises of the ECG in the phase and spatial domains, 

respectively. The estimation of the states of the nonlinear model (7) that are observable through a set of 
measurements (8) is possible through an extended Kalman filter. Our proposed framework is built upon 
an EKF structure for its simplicity and improved numerical stability over other Bayesian filters (Gelb 
1974). In order to use the KF formalism for this system, it is necessary to derive a linear approximation 
of (7) near a desired reference point, to obtain the following linear approximate model: 
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where f is the state evolution function and g represents the relationship between the state vector and the 
observations. The state variables vector, kx , the observation vector, 

k
y , the process noise vector, kw , 

and the observation noise vector, kv , are defined as follows: 
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where the prime indicates the transpose operator. The EKF algorithm is implemented using the time 
propagation and the measurement propagation equations to estimate the state variables (Kay 1993). The 
key idea for the implementation of the EKF is to linearize the nonlinear dynamical model in the 
vicinity of the previous estimated point, and to recursively calculate the state covariance matrices from 
the linearized equations, while the KF time propagation is performed via the original nonlinear 
equation (Haykin 2001).  

The parameters of linearized model for time and measurement propagation in the EKF structure 
can be obtained using the equation set (7), (8) and the coefficients of the linear approximate model (9). 
To simplify the equations of the linearized model, we define the following terms for i ∈ {P ˉ, P +, Q, R, 
S, T ˉ, T +
 

}: 
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where dcbaabcd λλλλλ = . According to this terminology, the linearization of (7) and (8) with respect 
to the process components yields the following linear approximate coefficients: 
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To improve the filtering performance, it is also possible to use the information of future 
observations in the estimation procedure. This idea leads to the extended Kalman smoother (EKS). The 
EKS uses the future observations to give better estimates of the current state. The EKS algorithm 
basically consists of a forward EKF stage followed by a backward recursive smoothing stage. Due to 
this non-causal nature, the EKS is expected to have a better performance compared with the EKF. 
Depending on the smoothing strategy, smoothing algorithms are usually classified into fixed lag or 
fixed interval smoothers (Gelb 1974). In this paper, the fixed interval EKS is used, since the filtering 
procedure is carried out offline on the entirety of each ECG signal. For real-time applications of the 
proposed EKS methods, the fixed lag smoother is usually more appropriate. 

The proposed nonlinear Bayesian framework estimates its variables using the state dynamical 
equations (7) and the noisy phase and noisy ECG observations. Having derived the state equations (7), 
the observation equations (8), and the linearized state equations of the ECG dynamic model (12), the 
implementation of the EKF and EKS is now possible. The filtering procedure provides the estimations 
corresponding to the CWs of the input ECG signal, which are summed up to obtain the denoised signal: 
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The denoising block diagram is shown in figure 1, in which the phase calculation block is simply 
an R-peak location detector, followed by linear assigning of a phase value between -π and π to the 
intermediate samples (Sameni et al. 2007b). In fact the ECG signal along with the phase signal forms 
the observation vector for the EKF structure. The initialization process is then run on this vector, to  
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Figure 1. General block diagram of the proposed algorithm for ECG denoising. 
 

 
 
 

find the initial value for the state vector, the covariance matrices of the process noise and the 
measurement noise. Finally, the estimations of the state variables are obtained using the KF 
formulation. 
 

 
4. Simulation Results 
 
The proposed algorithms were implemented in MATLAB®. The same RR-process generator as 
McSharry et al. (2003) was used for generating synthesized ECG signals with user-defined parameters 
(McSharry and Clifford 2003). Standard ECG databases from Physiobank, the Physionet signal 
archives (Golberger et al., 2000) were used to study the performance of the proposed denoising 
method. The initialization procedure described by Sameni et al. (2007) and Sayadi and Shamsollahi 
(2008) is employed for KF initialization. Qualitative and quantitative results are presented next. 
 
4.1. Synthetic ECG generation 
 

The described model gives the opportunity to have control on various signal parameters, such as the 
CW amplitude, spread and angular location, sampling frequency, mean and standard deviation of heart 
rate, noise amplitude, respiratory modulation frequency, and the ratio of the power contained in the 
low-frequency and high-frequency components of the tachogram spectrum. Figure 2 shows typical CW 
trajectories generated by the dynamical model (7) in the 3D space given by (x, y, z), with the limit cycle 
of unit radius included. Also, the distinct synthesized CWs are shown as a function of time, each of 
which is coupled with other CWs on a sequential time occurrence. The synthetic realistic ECG can be 
obtained by simply adding these three components, as shown in figure 2(c). The RR-tachogram and the 
corresponding bimodal power spectrum are shown in figure 2(d), 2(e) respectively, generated with 
mean heart rate 60 beats-per-minute and standard deviation 5 beats-per-minute. 

As it can be seen, the synthetic ECG mimics the morphology of a real ECG signal. In addition, the 
RR-interval tachogram has a realistic spectral content. In other words, the dominant peak in the high-
frequency band of the spectrum (≈ 0.25 Hz) is as the result of parasympathetic oscillations called 
respiratory sinus arrhythmia (RSA), while the second peak which is often found in the low-frequency 
band (≈ 0.1 Hz) is due to baroreflex regulation which creates the so-called Mayer waves in the blood 
pressure signal (De Boer et al. 1987).  
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(a) (b) 

 
(c) 

  
(d) (e) 

  
(f) (g) 

 
(h) 

  
Figure 2. Wave-based synthetic ECG generation. (a) CW trajectories in the Cartesian coordinates, (b) 
Synthetic CWs as functions of time, (c) realistic synthesized ECG, (d) RR-interval tachogram of the 
generated ECG using the proposed RR-process, (e) Bimodal power spectrum of the generated RR-
intervals, including the Mayer and RSA waves, (f) RR-interval tachogram of a typical real ECG signal, (g) 
Power spectrum of the real RR-intervals shown in (f) obtained from the typical ECG record, (h) realistic 
synthesized ECG using the real RR-interval tachogram. 

 
In order to have a more similar spectral contents to real HRV spectra, it is possible to use real heart 

rate variability signals acquired from real ECG signals, instead of generating artificial RR-tachograms 
using the proposed RR-process (section 3.1). Although this approach results in more realistic synthetic 
signals, the model is perhaps less useful for evaluating signal processing methods when used in this 
way. This is because standard pre-defined parameters such as those used in the RR-process generation 
cannot be accurately specified. Figure 2(h) shows a typical generated ECG signal using this approach, 
in which the RR-tachogram (figure 2(f)) is obtained to mimic a real HRV spectrum (figure 2(g)). 
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(a) (b) 

 
 

(c) (d) 
 2

 

 

 (e)  
  

Figure 3. ECG Synthesis for common pathological morphologies. (a) sinus bradycardia, (b) sinus 
tachycardia, (c) ventricular flutter, (d) atrial fibrillation, and (e) ventricular tachycardia. 

 
Table 1. The values of (α i,bi,θ i

 

) triplex parameters of the Gaussian kernels used in the wave-based synthetic 
ECG model for the generation of realistic signals shown in figure 3.  
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T (0.15,0.55,4π/7) + (0.15,0.55,4π/7) (0,0.1,5π/8) (0.55,0.17,7π/11) (3,0.45,20π/23) 

 
 
Table 2. Parameters of the RR-process used in the wave-based synthetic ECG model for the generation of 
realistic signals shown in figure 3. The parameters are the mean heart rate (HRmean), the standard deviation of 
the heart rate (HRSD), the mean normalized low frequency (lf

maen
), the standard deviation of the normalized 

low frequency (lfSD), the mean respiratory rate (hfmean), the standard deviation of the respiratory rate (hfSD

 

), 
and the low frequency to high frequency ration (LF/HF). 
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(a) 

 
(b) (c) 

  

Figure 4. Input noisy observations and the output denoised state variables of EKF4 for a typical ECG 
signal. (a) Noisy input phase (dashed) and ECG (solid) observations, (b) CW estimations, (c) Denoised 
phase signal (dashed) and the ECG signal (solid). 

 
Since the model has several parameters, it is possible to control the morphological features of the 

synthetic ECG. Accordingly, it is possible to introduce abnormal morphological changes with time 
using a parameter to control the position and the form of the events. This extension has been also tested 
to incorporate several pathological conditions. Figure 3 shows the results of generating synthetic 
normal and abnormal ECGs including two normal states (sinus bradycardia and sinus tachycardia) and 
three abnormalities (atrial fibrillation, ventricular flutter and ventricular tachycardia). The depictions 
are the model outputs for different set of input parameters. Visual analysis of different sections of 
typical ECGs - both normal and abnormal subjects - was used to suggest suitable times, amplitude and 
spread values for the events. The corresponding values of Gaussian kernel parameters are shown in 
table I. Table II lists the parameters of the RR-process used in the simulation, including the mean and 
the standard deviation of heart rate, normalized low frequency which corresponds to the Mayer waves, 
respiratory rate and LF/HF ratio. 
 
4.2. Bayesian filtering 
 
According to (13), the estimations of the second to fourth state variables obtained by the proposed EKF 
model with 4 state variables (EKF4) was summed up to form the denoised ECG signal. The same story 
holds for the EKS model with 4 state variables (EKS4). The MIT-BIH Normal Sinus Rhythm Database 
(Goldberger et al. 2000, MIT-BIH Normal Sinus Rhythm Database 1991) and The MIT-BIH Noise 
Stress Test Database (Goldberger et al. 2000, MIT-BIH Noise Stress Test Database) were used to study 
the performance of the proposed denoising method. Figure 4 shows typical EKF4 estimations, i.e. the 
CW estimates, which are summed up to form the denoised ECG. 

The effect of different types of noises including white and real noises on the performance of the 
proposed method is investigated in figure 5. Comparing these results visually, it can be seen that the 
proposed method have admirably tracked the original signal in a rather low input signal to noise ratio 
(SNR) scenario. Moreover, The EKS demonstrates a smoother result, compared to that of EKF. In 
particular, it can be seen that the denoised signal follows the clean ECG morphology when artificial 
white noise is added (Figure 5(a)). Likewise, for the real EMG noises, the denoised signal is free from 
any EMG artifacts (Figure 5(b)). Motion artifact is generally considered the most troublesome, since it 
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(a) 

 
(b) 

 
(c) 

  

Figure 5. Typical filtering results of the proposed wave-based approach for different types of input noises 
using EKF4 and EKS4. The MIT-BIH Normal Sinus Rhythm Database (Goldberger et al. 2000, MIT-BIH 
Normal Sinus Rhythm Database 1991) is used for evaluation. (a) Record 118e24 with an additive white 
Gaussian noise of –2 dB. (b) Record 118e18 with calibrated amount of real EMG noise (input SNR of 4 dB 
for the noisy portion). (c) Record 118e06 with real motion artifacts (input SNR of 6 dB). 

 
 
can mimic the appearance of ectopic beats, it causes undesired notches on the ST segment and cannot 
be removed easily by simple band pass filters, unlike other types. Figure 5(c) indicates that EKF4 is 
also able to remove motion artifact, while preserving diagnostic morphological information of the 
signal. Note that because there are underlying dynamics for the ECG signal which constrain the 
filtering, motion artifact cannot force the denoised signal follow distorted waveforms. To clarify this, 
see Figure 5(c), where the denoised signal shows a different pattern to that of the noisy signal. 
Specifically, the T-wave end points, the PQ intervals and the ST segments in the denoised signal do not 
follow the corresponding distorted portions of the noisy signal. 

To appreciate the merits of the proposed methods over the previously Bayesian model 
with 2 state variables, i.e. EKF2 and EKS2 (Sameni et al. 2007b), we have depicted the results of 
extended Kalman smoothing with EKS2 and EKS4 in Figure 6. The mean ECG, the standard deviation, 
and the least squares fit are also provided. One can easily find the ST elevation distortions and the 
baseline perturbation distortions of EKS2. In addition, when the initialization is not reliable or it does 
not account for out-kernel waves such as U wave, EKS4 outperforms EKS2 (see the U wave distortions 
in Figure 6(b) and the T wave distortions in Figure 6(d) for EKS2). For evaluating the performance of 
the proposed method, we have used the SNR improvement measure given by: 
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(14) 
 
 
 
 
 
 

where x denotes the clean ECG, xd is the denoised signal and xn

In order to investigate the performance of our algorithm and to compare it to different benchmark 
methods, we have implemented all Kalman-based ECG filtering schemes including the proposed EKF4  

 represents the noisy ECG. 
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(a) (c) 

  
(b) (d) 

  

Figure 6. Qualitative comparison of filtering performances for EKS2 and EKS4 using a normal (record 
106) and an abnormal (record 104) ECG from the MIT-BIH Arrhythmia Database (Goldberger et al. 2000, 
MIT-BIH Arrhythmia Database). (a) Average and standard deviation-bar of 20 ECG cycles of the normal 
ECG. The vertical lines are initial seeds for LSE fit, (b) Filtering results for the input normal ECG of 5 dB 
(top), EKS2 output with 8.94 dB improvement (middle), and EKS4 output with 10.26 dB improvement 
(bottom), (c)  Average and standard deviation-bar of 20 ECG cycles of the abnormal ECG, (d) Filtering 
results for the input abnormal ECG of 3.8 dB (top), EKS2 output with 7.03 dB improvement (middle), and 
EKS4 output with 9.89 dB improvement (bottom). The baseline perturbation distortions and the peaks 
distortions for EKS2 are clearly seen. 

 
 
 
 

 
and EKS4 methods, the EKF2 and EKS2 algorithms (Sameni et al. 2007b), and EKF17 which is a 
parameter-based Bayesian framework with auto- regressive dynamics (Sayadi and Shamsollahi 2008). 
Also, the conventional wavelet transform (WT) has been tested on the database. The reported results 
are based on the Coiflets3 mother wavelet with 6 levels of decomposition using the Stein’s Unbiased 
Risk Estimate (SURE) shrinkage rule, together with a single level rescaling and a soft thresholding 
strategy, as was tested by Sameni et al. (2007). For performance evaluation, Sameni et al. (2007) used 
190 ECG segments from the the first 13 records of the MIT-BIH Normal Sinus Rhythm Database 
(Goldberger et al. 2000, MIT-BIH Normal Sinus Rhythm Database 1991). We have used the same 
records, however to ensure the consistency of the results, the full-length of the records were used for 
simulation. The whole procedure was repeated 50 times over the first 60 minutes of the selected 
records; each time using the same initial parameters but with a different set of random white Gaussian 
noise at the input. The SNRs were generally calculated over the second half of the filtered segments, to 
ensure that the transient effects of the filters would not influence the SNR calculations. For a 
quantitative comparison, the mean and standard deviation (SD) of the SNR improvements versus 
different input SNRs are depicted in Figure 7.  

It can be seen that the EKS4 demonstrates the best average performance, and the EKF4 performs 
marginally better than the EKF2, is much similar to EKF17, but still underperforms the EKS2 
approach. Furthermore, the superiority of EKS4 is obvious, especially in lower input SNRs, where the 
clean ECG is lost in noise.  

Mathematically, white noise is defined to have a flat spectral density function over all frequencies. 
However, real noise sources have non-flat spectral densities that decrease in power at higher 
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(a) (b) 

  

Figure 7. The mean (left) and variance (right) of the filter output SNR improvements for white noise 
versus different input SNRs averaged over 50 repetitions for different filtering methods, including WT, 
EKF2, EKS2, EKF17, EKF4 and EKS4. 

 
 

frequencies, making the spectrum colored and the noise samples correlated in time. To have a better 
insight into the performance of the proposed Bayesian filter, artificial colored Gaussian noise with 
different variances were generated. For the current study, we have modeled the noise color by a single 
parameter representing the slope of a spectral density function that decreases monotonically with 
frequency: 

cf
fS 1)( ∝  

 
(15) 

where f is the frequency and c is the slope; a measure of noise color. White noise (c=0), pink or flicker 
noise (c=1), and brown noise or the random walk process (c=2), are three of the most commonly 
referenced noises (Kay 1981). 

Besides colored noises, calibrated amount of real noises were added to the ECG segments, and the 
noisy signals were presented to the benchmark and the proposed filters. The results of the noise color 
and real noise study are depicted in figure 8 for the mean SNR improvement as a function of the input 
SNR for all filtering methods. As can be seen, the filter performance increases as the input SNR ranges 
from 24 dB to -6 dB, while the slope of increase is larger for the proposed wave-based algorithms, i.e. 
EKF4 and EKS4. As with the previous results, it is seen that the EKS4 outperforms the results with all 
other techniques. 
In the presented approach, due to the phase wrapping of the RR interval to 2π, normal inter-beat 
variations of the RR-interval or consistent RR-interval abnormalities such as bradycardia or tachycardia 
do not considerably affect the filter performance. However, for morphological abnormalities that only 
appear in some of the ECG cycles, such as the Premature Ventricular Contraction (PVC), the phase 
error of the model can lead to large errors in the Gaussian functions’ locations. In particular, for low 
input SNRs, where neither the model nor the measurements are reliable for the filter, the filtering 
performance is not expected to be satisfactory. However, the benefit of the Gaussian mixture 
representation is that the effect of each Gaussian term vanishes very quickly (in less than the ECG 
period), meaning that the errors are not propagated to the following ECG cycles. In addition, the wave-
based structure enables the model to have less error propagations due to the separation of Gaussian 
kernels. Figure 9 shows typical filtering results of an ECG signal with a spontaneous PVC rhythm. It 
can be seen that EKF4 and specially EKS4 provide a more accurate representation of the signal and  
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(a) (b) 

 

 

 

 (c)  
  

Figure 8. The mean SNR improvements versus different input SNRs averaged over 50 repetitions for 
different filtering methods, including WT, EKF2, EKS2, EKF17, EKF4 and EKS4 for (a) pink noise, (b) 
brown noise, and (c) real EMG noise. 

 
 

 
  

Figure 9. Typical filtering results of an ECG signal with a spontaneous PVC rhythm using EKF2, EKS2, 
EKF4 and EKS4. Record 119 from the MIT-BIH Arrhythmia Database (Goldberger et al. 2000, MIT-BIH 
Arrhythmia Database) is used for simulation (dotted line). The denoised signals are shown with solid lines.  

 
 
track the rhythm change with less error in kernel assignments than EKF2 and EKS2. It should be 
mentioned that by monitoring the state estimates’ covariance matrices and the variations of the 
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innovation signals, it is possible to detect such unexpected abnormalities and hence, change the Kalman 
parameters to rely more on the observed cycle that the underlying dynamics (Sayadi et al. 2010). 

It is also worth noting that the model presented in this article can also be used for fiducial point 
detection, since the θ i in equation (2), which are traced from beat-to-beat determine the locations or 
each CW. Clifford and Villarroel (2006) showed how the onset and offset of the CW's can be found, 
even for composite Gaussians, using a set number of standard deviations from the central time location 
of the θ i

The figures demonstrate that the deviations behave like a normal distribution. Moreover, for the 
PR interval which is defined as the difference between peak locations of P wave and QRS complex, the 
error is not considerable (mostly below 8 ms). However, the asymmetric properties of T wave and 
theway the corresponding two Gaussian kernels are related to the peak location results in more 
deviations, but still well in the acceptable range (below 36 ms), even for common difficulties such as 
standard ECG noise, P- and T-wave splitting, low amplitude T-waves and R-on-T or T-U fusion. Note 
that the TP interval is a pretty good proxy for the QT interval and that the 95% region is +/-5ms, which 
is better than inter-observer differences in annotating QT intervals (Moody et al. 2006) and conforms to 
the EACAR

. However, since ECG segmentation is not within the scope of the current study, we just show 
simple examples of two interval extractions based on peak detection results. Thus, to assess the 
accuracy of the EKF investigate the segmentation results of the proposed model-based algorithm with 
real clinical parameters, histograms of deviations between the markings of the automatic algorithm 
compared to the ‘gold standard’ of manually measured PR intervals and TP intervals for the 13 patients 
are presented in figure 10. 

1

Another important issue is the limited range of deviations and their relation to the sampling 
frequency of the records. Figure 10 implies that the deviation lies in the interval of [−8, 8] ms for PR 
interval and [−36, 25] ms for TP interval extraction. Since the sampling frequency is 128 Hz, the 
former corresponds to 1 or 2 sample difference, and the latter corresponds to maximum 5 samples 
deviation from the manually located points. However, it was shown that for higher sampling 
frequencies (such as 360 Hz), the error is expected to be fewer than the above results (Sayadi and 
Shamsollahi 2008b). 

 guidelines. Based on this, it can definitely be said that the proposed automated method 
possess acceptable accuracy for clinical evaluations. Furthermore, combining the tracking properties of 
the EKF structure with the model-based idea, accuracy close to the experts’ measurements can be 
obtained. 

 

  
(a) (b) 

  

Figure 10. Histograms of deviations between the markings of the proposed automatic algorithm compared 
to the ‘gold standard’ of manually measured indices including (a) PR interval (b) TP interval. 

                                                 
1 The Expert Working Group (Efficacy) of the International Conference on Harmonisation of Technical Requirements for 
Registration of Pharmaceuticals for Human Use (ICH) (Branch 2005). 
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5. Discussion and Conclusions  
 
A wave-based dynamical set of motion equations was described and validated for synthetic ECG and 
CW generation, according to which a Bayesian framework was proposed for real ECG filtering. The 
model is based on a four dimensional state space that incorporates the characteristic waves of the ECG 
into a dynamical model. By separating the Gaussian functions, and using 2 kernels for asymmetric P 
and T waves, a state space model was constructed. The proposed set of equations aims at integrating 
into the ECG model a mechanism that estimates an ECG signal as a combination of finite characteristic 
waveforms, each of which represents a particular physiological state of the heart.  

The model is capable of replicating many of the important features of the human ECG, including 
the morphological features and the spectral characteristics. In fact, many of the morphological changes 
observed in the real ECGs manifest as a consequence of the geometrical structure of the model. The 
model parameters control the specifications of the synthesized ECG, and in particular the average 
morphology can be controlled by specifying the positions of the P, Q, R, S, and T events and the 
magnitude of their effect on the ECG. Having access to a realistic ECG provides a benchmark for 
testing biomedical signal processing techniques. Accordingly, it is important to know how they 
perform for different noise levels and sampling frequencies. In addition, separation of different 
characteristic waveforms enables us to have control on separate physiological states, which are coupled 
together via the angular frequency parameter.  

On the other hand, the state space model provides a means of KF-based tracking the behavior of 
the CWs, throughout the filtering procedure. From a filtering point of view, KFs can be thought of as 
adaptive filters that continuously move the location of the poles and zeros of their transfer functions, 
according to the signal or noise content of the input observations and the prior model of the signal 
dynamics. The filter structure is based upon a unique dynamical model, which is adapted to the 
observations according to the propagation equations. Moreover, this feature allows the filter to adapt 
with different spectral shapes and temporal nonstationarities, since the variance of the observation 
noise represents the degree of reliability of a single observation, as well as the degree of adaptively 
tracking the input noisy measurement. Based on this concept, we used the state variables estimations to 
obtain a denoised version of the input signal. The underlying dynamics (7) together with the KF 
structural covariance matrices guarantee the preservation of the signal morphology throughout the 
filtering procedure. The designed filter was applied to standard ECG databases. Compared to 
benchmark denoising schemes, the proposed EKF4 and EKS4 provides a larger SNR improvement, 
especially in lower input SNRs, where the original signal is lost in noise. 

The use of adaptive Gaussian filters had been previously reported (Hodson et al. 1981, Talmon et 
al. 1986), where the frequency response of a convolutive Gaussian filter was adapted to the estimates 
of the local properties of the signal in order to minimize the distortion of the undisturbed signal by the 
filter. The major drawback of these methods is the template waveform construction which results in a 
complex method with increased processing time (Talmon et al. 1986). However, the EKF-based 
technique does not depend on a template, and instead uses a dynamic state space representation for 
adaptive signal tracking. Moreover, unlike the digital filters that depends on the phase alignment and 
bandwidth control (De Pinto 1991), the Kalman filters does not need any spectral adjustments. 

Another point of interest is the low variance of SNR improvements for EKF4 and EKS4, which 
ensures the consistency of results as compared to other methods. Furthermore, the new modifications in 
the EKF structure results in fewer peak distortions and baseline perturbations tracking. This is true not 
only for white noise cases, but also for colored and real noises. In particular, the filter is more 
consistent while encountering spontaneous arrhythmias than the previously published methods. Hence, 
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the proposed method can serve as a basis for the design of a robust ECG filter, with applications for 
low SNR ECGs. 

As an advantage, the model in its current form can be effectively used for ECG segmentation and 
fiducial points extraction. In fact, since the wave-based model provides separate estimation of the 
characteristic waves, the point extraction procedure can be much easier than point localization on the 
ECG signal. Furthermore, similar analytic expressions to Sayadi and Shamsollahi (2009) can be used 
for feature extraction from the characteristic waves of the ECG recordings. 

In summary, the main contributions of this work are: 1) the introduction of a wave-based state 
space formulation for generating different types of pathologic ECG waveforms, 2) the derivation of a 
linearized model and the establishment of linear observation relations, 3) the proposal of a Kalman-
based filtering scheme that could provide robust estimations of the input noisy measurements, and 4) 
the determination of ECG fiducial points based on the wave-based structure.  Future works include 
incorporating non-Gaussian dynamics into the model to have a physiological correspondence for the 
asymmetric CWs. In addition, through modification of the RR-process, and especially by assigning 
nonlinear phases to the intermediate samples between R peaks, the time consequence of the CWs 
would be controlled, to produce pathological conditions such as QT prolongation and escape beats. 
Moreover, it is possible to use the methodology proposed by Clifford et al. (2010) and employ a first-
order Markov chain to incorporate the transitions from normal to arrhythmia. Probability transitions 
can be learned from real data or modeled by coupling to heart rate and sympathovagal balance. 
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