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Abstract

Cardiac output (CO) estimation using arterial blood
pressure (ABP) waveforms has been an active area of
physiology research over the past century. However, the ef-
fectiveness of the estimators has not been extensively stud-
ied in a clinical setting. In this paper, we evaluate 11 well-
known CO estimators using clinical radial ABP waveforms
from the Multi-Parameter Intelligent Monitoring for Inten-
sive Care II (MIMIC II) database, using thermodilution
CO (TCO) as reference for comparison. We compare esti-
mations to 988 TCO measurements in 84 patients, totaling
165 hours of ABP waveforms sampled at 125 Hz. As a nec-
essary step for producing absolute CO estimates, we also
present 3 methods of calibrating the estimators, each tai-
lored towards a different use model. The results show that
the standard deviation of error between TCO and the best
CO estimators is approximately 1 L/min for absolute CO
estimates. For relative estimates without calibration, the
best CO estimator has 18% error at 1 standard deviation.

1. Introduction

Cardiac output (CO) is a key parameter in assessing cir-
culatory function. The nominal CO value for a healthy
human is about 5 liters per minute. Currently in clinical
practice, the gold standard for CO measurement is ther-
modilution CO (TCO), which involves the insertion of a
Swan-Ganz catheter into the pulmonary artery. Admin-
istered primarily in intensive care units (ICUs), TCO is
usually measured intermittently, is very invasive, and may
cause severe complications. It would be a tremendous as-
set to healthcare if one could determine CO accurately, re-
liably, and continuously using less invasive, indirect meth-
ods. Indeed, in the past century, over a dozen schemes
have been proposed and developed to estimate CO using
arterial blood pressure (ABP) waveforms obtained from a
patient far less invasively. Some of these estimators rely on
elaborate models of the heart and vasculature while others
use artificial intelligence methods such as pattern match-
ing and classification trees. The published estimators have

not been extensively evaluated with a large set of clinical
ABP waveforms, hence the performance of CO estimation
is still uncertain. Studies in the past have mostly been con-
ducted on a small set of subjects under well-controlled lab-
oratory conditions. It is entirely possible that there willbe
circumstances in real world clinical practice in which these
indirect methods produce inaccurate estimates.

The Multi-Parameter Intelligent Monitoring for Inten-
sive Care II (MIMIC II) database has physiologic wave-
form data from over 3500 ICU patients hospitalized at
Beth Israel Deaconess Medical Center, Boston, USA. The
database has about 100 patient records that contain ABP
waveforms and TCO measurements simultaneously. Our
goal is to evaluate 11 of the CO estimators on a suitable
subset of these patients using TCO as reference standard.

Table 1. CO Estimators
Estimator CO = k · below
Mean Pressure Pmean

Windkessel [1] Ppulse · HR

Systolic Area [2] Asys · HR

Warner Time Correction [3]
�
1 +

Tsys

Tdias

�
Asys · HR

Liljestrand & Zander [4]
�

Ppulse

Psys+Pdias

�
· HR

Herd [5] (Pmean − Pdias) · HR

Corrected Impedance [6] Variant of systolic area

Nonlinear compliance [7] complex formula

RMS—Simplified form of [8]
q

〈(P (t) − Pmean)2〉 · HR

Exponential best fit [9] fit curve to diastolic decay

3-element model—variant of [10] nonlinear, time-varying model

RMS, root-mean-square. HR, heart rate.Asys, area under systolic region
of ABP. Tsys, Tdias durations of systole, diastole.

2. Overview of CO Estimators

Table 1 lists the 11 CO estimators analyzed in this study.
All expressions given in the table are proportional to CO.
The proportionality factor encapsulates factors such as ar-
terial compliance and peripheral resistance that are not
usually obtainable from ABP waveforms.

The relationship between ABP and CO can be under-



stood via the lumped-parameter Windkessel RC circuit
model (Figure 1) of the cardiovascular system. In the
model, electrical current is analogous to blood flowQ(t)
and electrical voltage to blood pressureP (t). The current
source models the heart as a pulsatile pump. The paral-
lel resistor-capacitor combination models peripheral resis-
tance and arterial compliance. In the simplest form, the
current source generates a periodic impulse train, which
gives the ABP waveformP (t). From circuit theory, it can
be shown that in steady state, the change in amplitude of
the ABP waveform is proportional to the amount of blood
ejected by the heart from each impulse. Thus, the Wind-
kessel CO estimator suggests that pulse pressure is propor-
tional to stroke volume, which yields CO when multiplied
by heart rate. A few estimators are based on the Wind-
kessel model, but use other features of the waveform such
as the exponential decay of the ABP during diastole.
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Figure 1. The Windkessel RC Circuit Model.

There are several major simplifying assumptions in the
model that cause discrepancies from the real cardiovas-
cular system. First, the entire venous circulation is ne-
glected. Second, the real heart does not eject blood in-
stantaneously. Finally, not only do arterial resistance and
compliance vary over a cardiac cycle, but also it is more ac-
curate to model the vasculature using a distributed system
rather than lumped parameters. Therefore, in an attempt to
produce more accurate results, some estimators have been
developed using more complex models such as nonlinear
arterial compliances and resistances, as well as distributed
models in which the blood vessels are no longer viewed as
lumped RC elements.

3. Methods

3.1. Implementation

Figure 2 presents the high-level data flow diagram of
our system. The first block interfaces with the MIMIC
II database to extract 10-minute ABP waveform segments
centered at each TCO measurement.

The next 3 blocks use signal processing techniques to
extract clean features of the ABP waveform required by
each CO estimator such as systolic pressure, diastolic pres-
sure, mean pressure (MAP), heart rate, etc. Since most
features can be obtained from each beat in the ABP wave-
form, an onset detection algorithm [11] is used for beat iso-
lation. The features are then median filtered to obtain aver-

Figure 2. Data flow diagram for CO estimation.

age statistics for each 1-minute waveform segment. Since
MIMIC II data is collected in a far less controlled envi-
ronment than a typical research experiment setting, wave-
forms are prone to noise and artifact corruption. To address
this problem, an algorithm that identifies bad waveform
segments was designed. For each beat, the filter outputs a
binary signal quality index (SQI), with ‘0’ indicating clean
and ‘1’ indicating corrupted. Figure 3 shows an example
of an ABP waveform marked with several features.

The third component implements each CO estimator,
using extracted features of the ABP waveform as input.
Since each estimator produces values proportional to the
estimated CO, at least one calibration with TCO is neces-
sary to obtain an absolute CO estimate in L/min.
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Figure 3. Radial ABP waveform.Psys, Pdias are marked
on waveform as circles. End-of-systole detections are
marked as crosses. SQI is shown as a stem plot on the
bottom, flagging any corrupted beat at the onset time.

3.2. Calibration and Evaluation

We calibrate each estimator in three ways (denoted as
C1, C2, C3), each tailored towards a different use model.
In two of the calibration methods, we use a vector-based
approach. For a patient withN TCO measurements, we
construct anN -dimensional column vector, with one di-



mension for each measurement:

Reference CO (TCO): r =
[

r1 r2 · · · rN

]T

Uncalibrated estimate: x =
[

x1 x2 · · · xN

]T

Calibrated estimate: q = kx

r

xkx

Figure 4. Visualizing TCO and estimated CO data as vec-
tors. For C1, we choosek to minimize error (magnitude of
the dashed vector).

As shown in Figure 4, the magnitude of error normalized
over TCO becomes

error=
‖r − q‖

‖r‖

For optimal calibration (C1), we choose a single constant
k to minimize the mean square error. Using linear algebra,
the optimalk is given as:

k =
rTx

xTx
(C1)

C1 calibration is useful in obtaining a lower bound of er-
ror for each estimator. However, C1 would be unsuitable
in a live clinical setting, in which we do not know future
values of TCO and ABP waveforms. Therefore, for on-
line estimation, we update our optimalk using previous
data points. For thei-th k, we calibrate using the previous
(i − 1)-dimensional vector:

ki =
rT

i−1
xi−1

xT

i−1
xi−1

(C2)

Now the calibrated estimate becomes:

q =
[

k1x1 k2x2 · · · kNxN

]T

Often times, TCO is administered sparingly in ICUs.
Therefore, it is also useful to know the estimator perfor-
mance by calibrating only to the first TCO measurement:

k =
r1

x1

(C3)

3.3. Relative CO estimation

Outside of the ICU setting, TCO is likely unavailable;
thus, we cannot calibrate to produce an absolute CO esti-
mate. However, it is still useful to know relative fractional
changes in CO. For example, if an uncalibrated estima-
tor output decreased from 4000 to 2000, we would like to

know if the true CO has decreased by a similar fractional
amount. For evaluation, we define percentage changes in
TCO and each uncalibrated CO estimator as:

X =
x − x

x
R =

r − r

r
r and x are averages in TCO and CO estimator output,
respectively. To report error, we examine the difference
betweenX andR. For example, ifX = 0.3 andR = 0.4,
the magnitude of error would be reported as 0.1, or 10%.

3.4. Patient Selection

We want to evaluate the CO estimators on patients that
have relatively clean ABP waveforms and a significant
number of TCO measurements. We accept patients in the
MIMIC II database if all of the following are true:

1. SQI flags≤ 20% of beats in ABP waveform.
2. Patients with≥ 5 TCO measurements.
3. Patients that do not have intra-aortic balloon pumps

or with abnormal aortic or tricuspid valve function.

Based on these criteria, 84 patients were identified, each
averaging 12 TCO measurements. Some statistics for the
population is listed in Table 2.

Table 2. Subject Population Statistics
Parameter Mean Range
Age [years] 70 40 − 95
TCO [L/min] 5.3 2 − 12
∆TCO per patient [L/min] 2.5 1.5 − 6

4. Results and Discussion

The first 3 columns of Table 3 list the standard devia-
tion of error in liters per minute between TCO and each
estimator for the 3 different calibrations for absolute CO
estimates. The last column of the table lists the percentage
error at 1 standard deviation for relative CO estimates. The
95% confidence intervals are about twice the values in the
table. Figure 5 shows a Bland-Altman plot for the Liljes-
trand & Zander estimator. The standard deviation and 95%
confidence intervals are marked by a pair of solid lines and
a pair of dashed lines, respectively.

From these results, we see that the best CO estimation
methods give errors of approximately 1 L/min. For C1-
calibration, the lowest error is 0.92 L/min. Although this
error may seem large, studies [12] have shown that TCO
itself has errors of 10% at the 1 std dev bound. Therefore,
if a TCO measurement reads 5 L/min, there may exist an
error up to 0.5 L/min. It is interesting to note that the mean
pressure and Windkessel estimators, the most primitive es-
timators of CO, have less error than some of the more ad-
vanced ones. Because some of the error distributions were



non-Gaussian, we employed the Kolmogorov-Smirnov test
to see if the top five estimators were statistically significant
better predictors of CO than mean pressure (these best five
were identified in a previous, smaller pilot study). The
threshold for significance wasp < 0.01, after a Bonfer-
roni correction for multiple (n = 5) comparisons. The
Liljestrand & Zander (p = 6.67 × 10−6) and Corrected
impedance (p = 4 × 10−4) estimators were significantly
superior to mean pressure, based on their error distribu-
tions resulting from the C1 calibration method.

Table 3. Estimation error in L/min at 1 standard deviation
with 3 different calibration methods, sorted from best to
worst. The last column lists the percentage error for rela-
tive estimation without calibration.

Error at 1σ C1 C2 C3 rel
Liljestrand & Zander 0.92 1.01 1.23 18%
Systolic area 0.96 1.06 1.29 19
Corrected impedance 1.00 1.09 1.29 20
Time correction 1.02 1.12 1.35 20
Mean pressure 1.02 1.11 1.43 20
Windkessel 1.04 1.16 1.37 20
Root-mean-square 1.04 1.18 1.38 21
Herd 1.24 1.37 1.55 25
Nonlinear compliance 1.28 1.46 1.72 26
3-element model 1.45 1.68 2.51 30
Exponential best fit 1.80 3.29 4.54 37
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Figure 5. Bland-Altman plot for comparing the Liljestrand
and Zander estimator(x) to TCO(r) with C1 optimal cal-
ibration. The error histogram is shown on the left. The
solid lines show 1 std dev bounds, and the dashed lines
show 95% confidence intervals.
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