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Abstract

Fidelity of the arterial blood pressure (ABP) wave-
form is often critical to computations that involve pro-
cessing of the waveform. The ABP waveform may be
used for cardiac output (CO) estimation, suppression of
ECG-based false alarms, and tracking long term trends
such as mean pressure. An abnormal ABP waveform may
cause these applications to give undesirable results. In
this paper, we present a signal abnormality index (SAI) al-
gorithm that detects abnormal beats in ABP waveforms.
The algorithm flags ABP beats by intelligently setting con-
straints on physiologic, noise/artifact, and beat-to-beat
variation values. Compared to an expert annotator, the al-
gorithm’s sensitivity=1, specificity=0.91, positive predic-
tive value=0.73, and negative predictive value=1. We also
perform a sensitivity analysis to show SAI’s robustness.
Finally, we use SAI to identify clean ABP segments from
our study population and show that CO estimation error is
30% less in the clean subset than in the entire population.

1. Introduction

The arterial blood pressure (ABP) waveform is a key
source of information for determining hemodynamic state
of a patient. By processing ABP waveforms, one can track
trends such as mean pressure and heart rate. As input to a
hemodynamic model, ABP is useful in estimating cardiac
output [1], arterial compliance, and peripheral resistance.
Combined with an ECG signal, ABP is useful in reducing
false alarms generated by bedside monitors [2].

However, these applications rely on a clean ABP wave-
form, in which beat-to-beat features such as mean pres-
sure, duration of systole, and beat period may be reliably
obtained. We define a beat asanomalouswhen any feature
in the beat becomes obscured. Median filtering helps to re-
duce some sporadic anomalies, but fails as anomalies be-
come more frequent. In the real-world environment such
as an intensive care unit (ICU), beat-to-beat features of-
ten become obscured due to noise/artifacts and physiologic
disturbances. Therefore, it is important to design an algo-
rithm that can flag anomalous beats in the ABP waveform
(Figure 1).

In this paper, we present the signal abnormality index
(SAI). The algorithm outputs at a beat-level time resolu-
tion and intelligently detects abnormal beats by imposing
a series of constraints on physiologic, noise/artifact, and
beat-to-beat variability. SAI does not distinguish between
anomalies arising from physiologic disturbances such as
an arrhythmia and non-physiologic phenomena such as
noise.
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Figure 1. A clinical ABP waveform with regions of ab-
normality. Signal abnormality index (SAI) is shown on
bottom, raising a flag in regions of abnormality.

The SAI algorithm was evaluated on clinical ABP wave-
forms from the Multi-Parameter Intelligent Monitoring for
Intensive Care II (MIMIC II) database [3]. The database
has physiologic waveform data from over 3500 ICU pa-
tients hospitalized at Beth Israel Deaconess Medical Cen-
ter, Boston, USA. MIMIC II has 120 patient records that
contain simultaneous ABP waveforms and thermodilution
cardiac output (gold-standard) measurements. Using the
120 records, we quantified the performance of the SAI
algorithm in 3 ways: comparing the algorithm’s perfor-
mance to a human expert, analyzing the sensitivity of
the algorithm’s output, and determining whether cleaner
waveform segments yield better cardiac output estimates.

2. Methods

Figure 2 shows an overview of the SAI algorithm. First,
a beat detection algorithm [4] marks the onset of each beat.
The onset markers allow for feature extraction at beat-level
resolution. For each beat, features such as heart rate, sys-
tolic blood pressure, diastolic blood pressure are obtained.
Features are then evaluated by a series of abnormality cri-
teria, which check for noise level, physiologic ranges, and
beat-to-beat variations. The output of each abnormality
criterion is binary, ‘0’ for no flag (clean beat) and ‘1’ for



flag. Finally, the outputs of all abnormality criteria are
combined via the logical OR operation.

Given an input ABP segment ofn beats, the overall out-
put (define asy) is a binary sequence of lengthn. For the
segment, a cumulative SAI (cSAI) is defined as

Y ≡ fraction of flagged beats=
1

n

n
∑

k=1

y[k]

wherey[k] is the SAI of thek-th beat. cSAI, with a con-
tinuous domain of0 ≤ Y ≤ 1, is a useful measure of
the abnormality of an entire waveform segment. (e.g. a
segment of50 beats with4 flagged would yield a cSAI of
0.08.)

The rest of this section explains several components of
the SAI in detail and proposes methods for algorithm eval-
uation. �������������	���
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Figure 2. SAI block diagram. Input is an ABP waveform.
Output is a binary string, assigning a value (no flag=0,
flag=1) to each beat in the ABP waveform.

2.1. Feature extraction

The feature extraction algorithm obtains a set of features
shown in Table 1. For each beat,Ps andPd are the local
minimum and maximum around the pressure onset point.
Pm is the average pressure between adjacent onsets.T is
the time difference between adjacent onsets. Noise level is
defined as the average of all negative slopes in each beat.

Table 1. ABP features
Feature Description
Ps Systolic blood pressure
Pd Diastolic blood pressure
Pp Pulse pressure(Ps − Pd)
Pm Mean arterial pressure
T Duration of each beat
f Heart rate(60/T )
w noise: mean of negative slopes

2.2. Abnormality indexing

With blood pressure features available, the SAI algo-
rithm is ready to interpret them. Table 2 lists the criteria

for flagging a beat.

Table 2. SAI logic
Feature Abnormality criteria
Ps Ps > 300 mmHg
Pd Pd < 20 mmHg
Pm Pm < 30 or Pm > 200 mmHg
f f < 20 or f > 200 bpm
Pp Pp < 20 mmHg
w w < −40 mmHg/100ms
Ps[k] − Ps[k − 1] |∆Ps| > 20 mmHg
Pd[k] − Pd[k − 1] |∆Pd| > 20 mmHg
T [k] − T [k − 1] |∆T | > 2/3 sec

The first 4 criteria in Table 2 impose bounds on the phys-
iologic ranges of each feature. For example, any beat with
a diastolic pressure of less than20mmHg is flagged.

The 5th criterion is the noise detector. With high fre-
quency noise, there will be large negative slopes in the
waveform. Based upon this observation and by inspect-
ing ABP data, we decided that any beat with a mean neg-
ative slope less than−40mmHg/100ms is flagged. Note
that this noise detector is not useful for identifying low
frequency noise such as baseline wander.

The final 3 criteria compare ABP features between adja-
cent beats. Large sudden changes in beat-to-beat features
are likely indications of abnormality. For example, if the
(k − 1)-th systolic pressure and thek-th systolic pressure
differs more than20mmHg, then thek-th beat is flagged.

2.3. Algorithm evaluation

Using 120 patient records from the MIMIC II database,
the SAI algorithm was evaluated in 3 ways:

1. Compare the algorithm’s performance to a human
expert in detecting anomalies in ABP waveform
segments. Ideally, the algorithm should be in per-
fect concordance with the human.

2. Analyze the sensitivity of algorithm’s output to per-
turbations of each threshold parameter in Table 2.
A robust algorithm would be relatively insensitive
to such perturbations.

3. Determine whether cleaner waveform segments, as
indicated by low cSAI values, yield better cardiac
output estimates.

In comparing to a human expert annotator, 246 ABP
segments were randomly selected, each 10 seconds long.
For each segment, the SAI algorithm outputs ‘1’ if any
beat is flagged as abnormal, ‘0’ otherwise. Similarly, the
human identifies any abnormality and classifies each seg-
ment using the following convention:



−− No irregularity—regular, homogeneous beats
with negligible artifacts and noise.

−+ Minor irregularity—clean waveform with mi-
nor timing irregularity of beats and/or minor
artifacts. Key morphologic features are still
clearly identifiable.

+− Irregularity present—all beats similar, but one
beat stands out from others with timing or
shape, and/or artifact present obscuring a por-
tion of a beat.

++ Major irregularity present—more than one
beat patently dissimilar from other beats,
and/or artifact present completely obscuring
key features of beats.

Notice that human annotations have 2 gray zones (−+ and
+−), which are used when the waveform’s abnormality is
not completely obvious.

For sensitivity analysis, the abnormality criteria are
tested independently each other. A parameter value in Ta-
ble 2 is perturbed while all other abnormality criteria are
not applied. We observe the impact on cSAI across the en-
tire study population, which includes over 30 million beats.
Sensitivity is defined as follows:

Sensitivity≡
dY

dθ̂

∣

∣

∣

∣

θ̂=1

whereY is the cSAI andθ̂ is the normalized parameter
value. Normalization allows for sensitivity comparison be-
tween different abnormality criteria.

In a recent study [1], we evaluated 11 different cardiac
output (CO) estimation methods from ABP waveforms.
The gold standard for comparison was thermodilution CO
(TCO). We study the performance of 3 CO estimation al-
gorithms (Table 3) in this paper.

Table 3. Cardiac output estimation algorithms
CO estimation method CO = k · below
Mean Pressure Pm

Windkessel [5] Pp · f

Liljestrand & Zander [6] Pp

Ps+Pd
· f

For our study population, a 1-minute ABP segment is
extracted at the time of each TCO measurement. Esti-
mated CO and cSAI are obtained for each 1-min ABP
segment. For the entire population, the error metric is
σ(CO − TCO), the standard deviation of the difference
between estimated CO and TCO. The error is evaluated as
a function of cSAI. We begin the experiment by examin-
ingσ of the entire population with no discrimination due to
cSAI. Then, 1-min segments with high cSAI values (poor
waveform quality) are progressively eliminated. The goal
is to examine whether CO estimation error decreases for
cleaner waveforms.

3. Results

3.1. SAI versus human

Table 4 shows the distribution of the 246 comparisons of
SAI versus a clinician (ATR). Note that SAI performance
is worse in the two grays zones (−+ and+−). However,
only 22% of data fall into these categories. Table 5 lists
important statistics derived from the distribution, both ex-
clusive (3rd column) and inclusive (4th column) of the gray
zones.

Table 4. SAI versus human: distribution
SAI
1 14 13 9 37
0 142 26 5 0

−− −+ +− ++ human

Distribution of the 246 ABP waveform segments. SAI key:0 no flag,1
flag. Human key:−− no flag,−+ probably no flag,+− probably flag,
++ flag

Table 5. SAI versus human: statistical summary
PPV P (+|1) 0.73 0.63
NPV P (−|0) 1 0.97
Sensitivity P (1|+) 1 0.90
Specificity P (0|−) 0.91 0.86

3rd column excludes gray zones, 4th column includes gray zones.
PPV=positive predictive value, NPV=negative predictive value,P (∗|∗)
are conditional probability notations for PPV, NPV, etc.

3.2. Sensitivity analysis

Figure 3 plots cSAI as a function of 3 abnormality cri-
teria. Notice that each criterion flags only a small fraction
of beats, and the slope of the curves are not steep but also
nonzero at̂θ = 1. Table 6 lists the sensitivity of every pa-
rameter. The results indicate that our study population had
no waveform withPs > 300mmHg orPm > 200mmHg.

θ̂ — normalized thresholds
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Figure 3. Perturbations to abnormality criteria. cSAI as a
function of 3 parameters perturbations is shown. Sensitiv-
ity is defined to be the slope of each curve atθ̂ = 1.



Table 6. SAI sensitivity
Feature θ0 Y (θ0) |Sensitivity|
Ps 300 0 0
Pd 30 .010 .003
Pm,min 30 .007 .007
Pm,max 200 0 0
fmin 20 .001 .001
fmax 200 .047 .180
Pp 20 .028 .092
w −4 .027 .160
Ps[k] − Ps[k − 1] 20 .064 .080
Pd[k] − Pd[k − 1] 20 .007 .013
T [k] − T [k − 1] 0.7 .017 .033

3.3. Cardiac output estimation error

Figure 4 plots CO estimation error as a function of
maximum accepted cSAI. Errors decrease for lower cSAI
(cleaner waveform) values. For the Liljestrand algorithm,
an error reduction of 30% is obtained. The mean pressure
estimation algorithm is most robust to noise, as evidenced
by its relatively flat line. This robustness is expected be-
cause of the simplicity and averaging nature of the mean
pressure algorithm.
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Figure 4. Cardiac output estimation error as a function
of maximum accepted cSAI. Bottom plot shows that the
amount of data also decreases as we restrict ourselves to
cleaner waveforms.

4. Discussion and conclusions

Evaluating the performance of the SAI algorithm is non-
trivial, primarily because of a lack in the quantitative defi-
nition of an ‘abnormal’ beat of an ABP waveform. Conse-

quently, there is no established gold standard to compare
against. Furthermore, the definition of abnormality can be
application dependent. For example, beat quality needs to
be higher for CO estimation than for mean pressure track-
ing because more features derived from each beat are used
for the former.

From the sensitivity analysis, two abnormality criteria
do nothing and have sensitivity of0. Therefore, for our
study population, they can be removed. Of the remaining
criteria, pairwise correlation studies can be performed in
the future to identify any redundant criteria.

In conclusion, we have presented an algorithm that de-
tects anomalies in the ABP waveform. The SAI algorithm
is in close agreement with a human expert (Table 5), is ro-
bust (Table 6), and has proven its effectiveness in its ability
to select clean ABP waveforms to improve CO estimation.
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